期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Web Tension Regulation of Multispan Roll-to-Roll System using Integrated Active Dancer and Load Cells for Printed Electronics Applications 被引量:1
1
作者 ZUBAIR Muhammad PONNIAH Ganeshthangaraj +1 位作者 YANG Young Jin CHOI Kyung Hyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期229-239,共11页
The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of... The mass production of primed electronics can be achieved by roll-to-roll(R2R) printing system, so highly accurate web tension is required that can minimize the register error and keep the thickness and roughness of printed devices in limits. The web tension of a R2R system is regulated by the use of integrated load cells and active dancer system for printed electronics applications using decentralized multi-input-single-output(MISO) regularized variable learning rate backpropagation artificial neural networks. The active dancer system is used before printing system to reduce disturbances in the web tension of process span. The classical PID control result in tension spikes with the change in roll diameter of winder and unwinder rolls. The presence of dancer in R2R system shows that improved web tension control in printing span and the web tension can be enhanced from 3.75 N to 4.75 N. The overshoot of system is less than ±2.5 N and steady state error is within ± 1 N where load cells have a signal noise of ±0.7 N. The integration of load cells and active dancer with self-adapting neural network control provide a solution to the web tension control of multispan roll-to-roll system. 展开更多
关键词 roll-to-roll(R2R)system multispan printed electronics active dancer load cell artificial neural networks tension control multi-input-single-output(MISO
下载PDF
Colorful liquid metal printed electronics 被引量:1
2
作者 LIANG ShuTing LIU Jing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第1期110-116,共7页
Liquid metal based printed electronics was a newly emerging frontier in recent years. However, restricted by the single silver-white appearance of the liquid metal(LM), the colors of currently available printed electr... Liquid metal based printed electronics was a newly emerging frontier in recent years. However, restricted by the single silver-white appearance of the liquid metal(LM), the colors of currently available printed electronics were rather limited. Here,a new conceptual LM based colorful printed electronics was proposed where electrical wires and circuits with numerous colors can be made via a straightforward, efficient and accurate printing procedure. Firstly, the LM was printed on the substrate to construct a conductive wire. Then it was frozen to a solid. Subsequently, colorful pigments were coated on the originally printed liquid metal conductive wires, which finally were packaged with PDMS. Such multicolored conductive wire exhibits excellent conductivity, and good temperature resistance(do not fade at high temperature). Further, the adhesion mechanism of the mineral pigments on the liquid metal layer was disclosed. And the pigment layer was discovered to well protect the LM from the outside environments, and enhance the durability of the LM conductive wire at the same time. These multicolored liquid metal wires take an aesthetic appearance, excellent printability, flexibility, large conductivity and stable performance, which would significantly enhance the sense of beauty and experience when compared to the conventional printed electronics. 展开更多
关键词 liquid metal printed electronics MULTICOLOR functional device
原文传递
ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics 被引量:1
3
作者 Bhavani Prasad Yalagala Abhishek Singh Dahiya Ravinder Dahiya 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第2期11-25,共15页
Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable m... Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires(NWs) based degradable high-performance UV photodetectors(PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity(55 A/W), superior specific detectivity(4×10^(14) jones), and the highest gain(8.5×10~(10)) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range(5–50 ℃).The biodegradability studies performed on the device, in both deionized(DI) water(pH≈6) and PBS solution(pH=7.4),show fast degradability in DI water(20 mins) as compared to PBS(48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact. 展开更多
关键词 transient electronics degradable devices ZnO nanowire CHITOSAN UV photodetector printed electronics
下载PDF
Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions
4
作者 Juan Carlos HERNANDEZ-CASTANEDA Boon Keng LOK Hongyu ZHENG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第2期303-318,共16页
This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used... This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used in manufacturing functional printed electronics for large-area applications.Here,optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions.Direct diode(808 nm),Nd:YAG(1064 nm and second harmonic of 532 nm),and ytterbium fiber(1070 nm)lasers are explored.Optimal parameters for sintering the Cu NPs are identified for each laser system,which targets low resistivity and high processing speed.Finally,the quality of the sintered tracks is quantified,and the laser sintering mechanisms observed under different wavelengths are analyzed.Practical considerations are discussed to improve the laser sintering process of Cu NPs. 展开更多
关键词 laser sintering copper nanoparticles printed electronics
原文传递
Dow Corning~ Materials for Printed Electronics
5
《射频世界》 2007年第1期92-93,共2页
A new generation of RFID materials with de- signed-in compatibility helps raise quality, reliability and process efficiency If RFID technology is headed for the heights predicted by forecasters, it will require an ong... A new generation of RFID materials with de- signed-in compatibility helps raise quality, reliability and process efficiency If RFID technology is headed for the heights predicted by forecasters, it will require an ongoing evolution of new materials and re- lated technologies to help reduce card/label assembly costs and improve performance. From a materials standpoint, the critical elements in any printed RFID inlay include the chip, the chip attachment method, the antenna, 展开更多
关键词 RFID Materials for printed electronics Dow Corning
原文传递
Fully Printed High‑Performance n‑Type Metal Oxide Thin‑Film Transistors Utilizing Coffee‑Ring Effect 被引量:1
6
作者 Kun Liang Dingwei Li +11 位作者 Huihui Ren Momo Zhao Hong Wang Mengfan Ding Guangwei Xu Xiaolong Zhao Shibing Long Siyuan Zhu Pei Sheng Wenbin Li Xiao Lin Bowen Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期68-78,共11页
Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from va... Metal oxide thin-films transistors(TFTs)produced from solution-based printing techniques can lead to large-area electronics with low cost.However,the performance of current printed devices is inferior to those from vacuum-based methods due to poor film uniformity induced by the“coffeering”effect.Here,we report a novel approach to print highperformance indium tin oxide(ITO)-based TFTs and logic inverters by taking advantage of such notorious effect.ITO has high electrical conductivity and is generally used as an electrode material.However,by reducing the film thickness down to nanometers scale,the carrier concentration of ITO can be effectively reduced to enable new applications as active channels in transistors.The ultrathin(~10-nm-thick)ITO film in the center of the coffee-ring worked as semiconducting channels,while the thick ITO ridges(>18-nm-thick)served as the contact electrodes.The fully inkjet-printed ITO TFTs exhibited a high saturation mobility of 34.9 cm2 V^(−1) s^(−1) and a low subthreshold swing of 105 mV dec^(−1).In addition,the devices exhibited excellent electrical stability under positive bias illumination stress(PBIS,ΔV_(th)=0.31 V)and negative bias illuminaiton stress(NBIS,ΔV_(th)=−0.29 V)after 10,000 s voltage bias tests.More remarkably,fully printed n-type metal–oxide–semiconductor(NMOS)inverter based on ITO TFTs exhibited an extremely high gain of 181 at a low-supply voltage of 3 V,promising for advanced electronics applications. 展开更多
关键词 printed electronics Indium tin oxide Thin-film transistors Coffee-ring effect NMOS inverters
下载PDF
Preparation of Cu@Ag Nanoparticles for Conductive Ink
7
作者 Sijie Wang Helong Yu 《Journal of Materials Science and Chemical Engineering》 2021年第9期1-10,共10页
In order to overcome the shortcomings of low-cost anti-oxidation conductive ink and its preparation method in the field of printing electronics, core-shell coated Cu@Ag nanoparticles were used to prepare conductive in... In order to overcome the shortcomings of low-cost anti-oxidation conductive ink and its preparation method in the field of printing electronics, core-shell coated Cu@Ag nanoparticles were used to prepare conductive ink, and a printed circuit was obtained by inkjet printing. Copper nanoparticles were prepared by a chemical reduction method and then coated with Cu@Ag particles by a copper-based self-catalytic reaction. Conductive ink was prepared by ball milling and dispersion and printed on PI film to form a conductive coating. After characterization and analysis, the particle size and dispersion of the obtained Cu@Ag meet the requirements and can be stored stably under normal atmospheric conditions. The resistivity of the conductive film sintered at 300&#730;C is only 10.6 μ&#8486;<span style="font-size:10.0pt;font-family:"">&#8729;</span>cm. 展开更多
关键词 printed electronics Conductive Ink Core-Shell Nanoparticles ANTIOXIDANT
下载PDF
Printed stretchable circuit on soft elastic substrate for wearable application 被引量:4
8
作者 Wei Yuan Xinzhou Wu +2 位作者 Weibing Gu Jian Lin Zheng Cui 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期232-237,共6页
In this paper, a flexible and stretchable circuit has been fabricated by the printing method based on Ag NWs/PDMS composite. The randomly oriented Ag NWs were buried in PDMS to form a conductive and stretchable electr... In this paper, a flexible and stretchable circuit has been fabricated by the printing method based on Ag NWs/PDMS composite. The randomly oriented Ag NWs were buried in PDMS to form a conductive and stretchable electrode. Stable conductivity was achieved with a large range of tensile strain(0-50%) after the initial stretching/releasing cycle. The stable electrical response is due to the buckling of the Ag NWs/PDMS composite layer. Furthermore, printed stretchable circuits integrated with commercial ICs have been demonstrated for wearable applications. 展开更多
关键词 printed electronics silver nanowires stretchable electronics wearable electronics
原文传递
Printed unmanned aerial vehicles using paper-based electroactive polymer actuators and organic ion gel transistors 被引量:1
9
作者 Gerd Grau Elisha J.Frazier Vivek Subramanian 《Microsystems & Nanoengineering》 EI 2016年第1期135-142,共8页
We combined lightweight and mechanically flexible printed transistors and actuators with a paper unmanned aerial vehicle(UAV)glider prototype to demonstrate electrically controlled glide path modification in a lightwe... We combined lightweight and mechanically flexible printed transistors and actuators with a paper unmanned aerial vehicle(UAV)glider prototype to demonstrate electrically controlled glide path modification in a lightweight,disposable UAV system.The integration of lightweight and mechanically flexible electronics that is offered by printed electronics is uniquely attractive in this regard because it enables flight control in an inexpensive,disposable,and easily integrated system.Here,we demonstrate electroactive polymer(EAP)actuators that are directly printed into paper that act as steering elements for low cost,lightweight paper UAVs.We drive these actuators by using ion gel-gated organic thin film transistors(OTFTs)that are ideally suited as drive transistors for these actuators in terms of drive current and frequency requirements.By using a printing-based fabrication process on a paper glider,we are able to deliver an attractive path to the realization of inexpensive UAVs for ubiquitous sensing and monitoring flight applications. 展开更多
关键词 electroactive polymer(EAP)actuators inexpensive flight system integration ion gel-gated organic thin film transistors(OTFTs) lightweight paper substrates printed electronics unmanned aerial vehicle
原文传递
Inkjet printed large-area flexible circuits:a simple methodology for optimizing the printing quality 被引量:1
10
作者 Tao Cheng Youwei Wu +2 位作者 Xiaoqin Shen Wenyong Lai Wei Huang 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期224-231,共8页
In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjetpri... In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjetprinted silver lines was successfully reduced to 1/3 of the original value using this methodology. Large-area flexible circuits with delicate patterns and good morphology were thus fabricated. The resultant flexible circuits showed excellent electrical conductivity as low as 4.5 Ω/□ and strong tolerance to mechanical bending. The simple methodology is also applicable to substrates with various wettability, which suggests a general strategy to enhance the printing quality of inkjet printing for manufacturing high-performance large-area flexible electronics. 展开更多
关键词 inkjet printing flexible circuits patterning resolution large-area electronics flexible electronics
原文传递
Surface tension of liquid metal: role, mechanism and application 被引量:8
11
作者 Xi ZHAO Shuo XU Jing LIU 《Frontiers in Energy》 SCIE CSCD 2017年第4期535-567,共33页
Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in indu... Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measure- ment methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fimdamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven self- actuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out. 展开更多
关键词 surface tension liquid metal soft machine printed electronics ELECTROWETTING self-actuation
原文传递
Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer 被引量:2
12
作者 Sergio Castro-Hermosa Luana Wouk +5 位作者 Izabela Silva Bicalho Luiza de Queiroz Correa Bas de Jong Lucio Cina Thomas M.Brown Diego Bagnis 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1034-1042,共9页
Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick pr... Fully printed perovskite solar cells(PSCs)were fabricated in air with all constituent layers,except for electrodes,deposited by the blade coating technique.The PSCs incorporated,for the first time,a nanometer-thick printed bathocuproine(BCP)hole blocking buffer using blade coating and deposited at relative humidity up to 50%.The PSCs with a p-i-n structure(glass/indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS)/CH_(3)NH_(3)Pbl_(3)/[6,6]-phenyl-C_(61)-butyric acid methyl ester(PCBM)/BCP/Ag)delivered a maximum power conversion efficiency(PCE)of 14.9%on an active area of 0.5 cm^(2)when measured under standard test conditions.The PSCs with a blade coated BCP delivered performance of 10%and 63%higher(in relative terms)than those incorporating a spin coated BCP or without any BCP film,respectively.The atomic force microscopy(AFM)showed that blade coated films were more homogeneous and acted also as a surface planarizer leading to a reduction of roughness which improved BCP/Ag interface lowering charge recombination.The demonstration of 15%efficient devices with all constituent layers,including nanometer-thick BCP(〜10 nm),deposited by blade coating in air,demonstrates a route for industrialization of this technology. 展开更多
关键词 PEROVSKITE buffer bathocuproine(BCP) blade coating printed electronics
原文传递
UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes 被引量:3
13
作者 Wan-Ho Chung Sung-Hyeon Park +1 位作者 Sung-Jun Joo Hak-Sung Kim 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2190-2203,共14页
Graphene oxide and silver nanowires were bar coated onto polyethylene terephthalate (PET) substrates and then welded using an ultraviolet (UV)-assisted flash light irradiation process to achieve both high electric... Graphene oxide and silver nanowires were bar coated onto polyethylene terephthalate (PET) substrates and then welded using an ultraviolet (UV)-assisted flash light irradiation process to achieve both high electrical conductivity and low haze. The irradiation process connected adjacent silver nanowires by welding, while simultaneously reducing the graphene oxide to graphene. This process was performed using a custom W-assisted flash light welding system at room temperature under ambient conditions and was extremely rapid, with processing time of several milliseconds. The effects of varying the weight fractions of the silver nanowires and graphene oxide and of varying the W-assisted flash light welding conditions (light energy and pulse duration) were investigated. The surface morphologies of the welded silver nanowire/graphene films were analyzed using scanning electron microscopy. Optical characterizations, including transmittance and haze measurements, were also conducted using a spectrophotometer. To test their resistance to oxidation, the welded silver nanowire/graphene films were subjected to high temperature in a furnace (100 ℃), and their sheet resistances were measured every hour. The flash light welding process was found to yield silver nanowire/graphene films with high oxidation resistance, high conductivity (14.35 Ω·sq-1), high transmittance (93.46%), and low haze (0.9%). This material showed uniform temperature distribution when applied as a resistive heating film. 展开更多
关键词 silver nanowires graphene oxide transparent electrode flash light welding printed electronics
原文传递
Li_(x)Na_(2-x)W_(4)O_(13) nanosheet for scalable electrochromic device
14
作者 Yucheng LU Xin YANG +5 位作者 Hongrun JIN Kaisi LIU Guoqun ZHANG Liang HUANG Jia LI Jun ZHOU 《Frontiers of Optoelectronics》 EI CSCD 2021年第3期298-310,共13页
The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials.Two-dimensional(2D)materials are promising functiona... The printed electronics technology can be used to efficiently construct smart devices and is dependent on functional inks containing well-dispersed active materials.Two-dimensional(2D)materials are promising functional ink candidates due to their superior properties.However,the majority 2D materials can disperse well only in organic solvents or in surfactant-assisted water solutions,which limits their applications.Herein,we report a lithium(Li)-ion exchange method to improve the dispersity of the Na_(2)W_(4)O_(13) nanosheets in pure water.The Li-ion-exchanged Na_(2)W_(4)0_(13)(Li_(x)Na_(2-x)W_(4)O_(13))nanosheets show highly stable dispersity in water with a zeta potential of-55 mV.Moreover,this aqueous ink can be sprayed on various substrates to obtain a uniform LixNa2_xW4O13 nanosheet film,exhibiting an excellent electrochromic performance.A complementary electrochromic device containing a Li_(x)Na_(2-x)W_(4)O_(13) nanosheet film as an electrochromic layer and Prussian white(PW)as an ion storage layer exhibits a large optical modulation of 75% at 700 nm,a fast switching response of less than 2 s,and outstanding cyclic stability.This Na2W4Oi3-based aqueous ink exhibits considerable potential for fabricating large-scale and flexible electrochromic devices,which would meet the practical application requirements. 展开更多
关键词 printed electronics technology two-dimensional material INK ion exchange electrochromic device
原文传递
Flexible substrates enabled highly integrated patterns with submicron precision toward intrinsically stretchable circuits
15
作者 Wenkun Lv Zhaoxin Liu +5 位作者 Zheng Li Zhifei Han Yongrui Yang Qi Li Yali Qiao Yanlin Song 《SmartMat》 2022年第3期503-512,共10页
Fabricating high integration density,high resolution,and intrinsically stretchable patterns by patterned technologies remain challenging.Template printing enabled high-precision patterned fabrication at a facile opera... Fabricating high integration density,high resolution,and intrinsically stretchable patterns by patterned technologies remain challenging.Template printing enabled high-precision patterned fabrication at a facile operation.However,the pattern spacing constraint is the major limitation to high integration density.In this study,we develop an elastomer-assisted strategy to improve the template printing process,which involves patterning on the prestrain elastic substrate.This strategy overcomes the spacing limitation and enables the realization of a centimeter-scale pattern with submicron precision.Particularly,the integration density of fabricated intrinsically stretchable patterns can reach 1932 lines on a substrate of 0.5 cm2;the assembly lines with a feature size of 880 nm and an interval of 955 nm.Furthermore,we demonstrate a facile approach for constructing silver nanoparticle/liquid metal alloy composite conductive patterns.The as-prepared flexible electrodes can withstand up to 150%strain and a 2-mm bend radius.This method provides new insights into template printing technology.Additionally,it opens a route for the simultaneous construction of functional patterned arrays with large scale,high integration density,and intrinsic stretchability,which will be useful for the integrated fabrication of various flexible electronic devices. 展开更多
关键词 flexible devices highly integrated patterns liquid metal alloys printed electronics stretchable electronics
原文传递
Perspective on liquid metal enabled space science and technology 被引量:2
16
作者 ZHANG Xu-Dong LIU Jing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1127-1140,共14页
With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Rece... With the rapid development of deep space exploration and commercial flight, a series of tough scientific and technological challenges were raised, which urgently require ever advanced technologies to tackle with. Recently, liquid metals, as a kind of newly emerging functional material, are attracting various attention and many breakthroughs have been made on earth. Such a scientific trend also suggests promising approaches for solving those extreme challenges in space environment. To fulfill the increasing needs thus involved, this article is dedicated to systematically introducing liquid metal material and its related disciplines into space science and technology. Firstly, existing application of liquid metal cooling for space nuclear power was summarized. Then, some potential space practices were tentatively put forward, such as liquid metal thermal interface medium,liquid metal phase change material, liquid metal convection cooling, metal alloy thermal storage, liquid metal electromagnetic shielding and liquid metal electronic printing. Fundamental as well as practical issues that would differ with earth were interpreted. Finally, potential liquid metal space experiments were proposed to investigate the liquid metal hydrodynamic characteristic, wettability and phase change mechanism in space physical environment. Overall, liquid metal enabled space science and technology investigation will not only help efficiently solve the current and future space technological problems, but also aid to stimulate the advancement of liquid metal space material science. 展开更多
关键词 liquid metal space science and technology space nuclear power thermal management electromagnetic shielding electronic printing hydrodynamic characteristics
原文传递
Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication 被引量:10
17
作者 Lawrence E.Murr 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期987-995,共9页
It has been more than three decades since stereolithography began to emerge in various forms of additive manufacturing and 3D printing. Today these technologies are proliferating worldwide in various forms of advanced... It has been more than three decades since stereolithography began to emerge in various forms of additive manufacturing and 3D printing. Today these technologies are proliferating worldwide in various forms of advanced manufacturing. The largest segment of the 3D printing market today involves various polymer component fabrications, particularly complex structures not attainable by other manufacturing methods.Conventional printer head systems have also been adapted to selectively print various speciated human cells and special molecules in attempts to construct human organs, beginning with skin and various tissue patches. These efforts are discussed along with metal and alloy fabrication of a variety of implant and bone replacement components by creating powder layers, which are selectively melted into complex forms(such as foams and other open-cellular structures) using laser and electron beams directed by CAD software. Efforts to create a "living implant" by bone ingrowth and eventual vascularization within these implants will be discussed briefly. Novel printer heads for direct metal droplet deposition as in other 3D printing systems are briefly described since these concepts will allow for the eventual fabrication of very large and complex products, including automotive and aerospace structures and components. 展开更多
关键词 3D printing/additive manufacturing Laser and electron beam melting Organ printing Organ and implant vascularization Metal droplet printing
原文传递
Cutting edge preparation of microdrills by shear thickening polishing for improved hole quality in electronic PCBs
18
作者 Jiahuan WANG Mingfeng KE +7 位作者 Jiepei LIAO Yu ZHOU Saurav GOEL Jaya VERMA Xu WANG Weigang GUO Julong YUAN Binghai LYU 《Frontiers of Mechanical Engineering》 SCIE 2024年第2期99-107,共9页
Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial ... Printed circuit boards(PCBs)are representative composite materials,and their high-quality drilling machining remains a persistent challenge in the industry.The finishing of the cutting edge of a microdrill is crucial to drill performance in machining fine-quality holes with a prolonged tool life.The miniature size involving submicron scale geometric dimensions,a complex flute shape,and low fracture toughness makes the cutting edge of microdrills susceptible to breakage and has been the primary limiting factor in edge preparation for microdrills.In this study,a newly developed cutting edge preparation method for microdrills was tested experimentally on electronic printed circuit boards.The proposed method,namely,shear thickening polishing,limited the cutting edge burrs and chipping on the cutting edge,and this in turn transformed the cutting edge’s radius from being sharp to smooth.Moreover,the edge–edge radius could be regulated by adjusting the processing time.PCB drilling experiments were conducted to investigate the influence of different cutting edge radii on wear,hole position accuracy,nail head value,and hole wall roughness.The proposed approach showed 20%enhancement in hole position accuracy,33%reduction in the nail head value,and 19%reduction in hole wall roughness compared with the original microdrill.However,a threshold is needed;without it,excessive shear thickening polishing will result in a blunt edge,which may accelerate the wear of the microdrill.Wear was identified as the primary factor that reduced hole quality.The study indicates that in printed circuit board machining,microdrills should effectively eliminate grinding defects and maintain the sharpness of the cutting edge as much as possible to obtain excellent drilling quality.Overall,shear thickening polishing is a promising method for cutting edge preparation of microdrills.Further research and optimization can lead to additional improvements in microdrill performance and contribute to the continued advancement of printed circuit board manufacturing. 展开更多
关键词 microdrill shear thickening polishing cutting edge preparation electronic printed circuit boards hole quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部