期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Inkjet printed large-area flexible circuits:a simple methodology for optimizing the printing quality 被引量:1
1
作者 Tao Cheng Youwei Wu +2 位作者 Xiaoqin Shen Wenyong Lai Wei Huang 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期224-231,共8页
In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjetpri... In this work, a simple methodology was developed to enhance the patterning resolution of inkjet printing, involving process optimization as well as substrate modification and treatment. The line width of the inkjetprinted silver lines was successfully reduced to 1/3 of the original value using this methodology. Large-area flexible circuits with delicate patterns and good morphology were thus fabricated. The resultant flexible circuits showed excellent electrical conductivity as low as 4.5 Ω/□ and strong tolerance to mechanical bending. The simple methodology is also applicable to substrates with various wettability, which suggests a general strategy to enhance the printing quality of inkjet printing for manufacturing high-performance large-area flexible electronics. 展开更多
关键词 inkjet printing flexible circuits patterning resolution large-area electronics flexible electronics
原文传递
Effect of Ink Molecular Weights and Annealing Conditions on Molecular Transfer Printing
2
作者 Yuan-Yuan Pang Sheng-Xiang Ji 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第6期697-702,共6页
The molecular transfer printing(MTP) technique has been invented to fabricate chemical patterns with high fidelity using homopolymer inks. In this work, we systematically studied the effects of the molecular weights... The molecular transfer printing(MTP) technique has been invented to fabricate chemical patterns with high fidelity using homopolymer inks. In this work, we systematically studied the effects of the molecular weights of homopolymer inks and transfer conditions on the MTP process. We explored a large range of molecular weights(~3.5-56 kg·mol^(-1)) of hydroxyl-terminated polystyrene(PS-OH) and hydroxyl-terminated poly(methyl methacrylate)(PMMA-OH) in the MTP process, and found that the resulting chemical patterns on replicas from all five blends were functional and able to direct the assembly of films of the same blends. The transfer temperature and the film annealing sequences had an impact on the MTP process. MTP was sensitive to the transfer temperature and could only be performed within a certain temperature range, i.e. higher than the glass transition temperature(T_g) of copolymers and lower than the rearrangement temperature of the assembled domains. Pre-organization of the blend films was also necessary for MTP since the preferential wetting of PMMA domains at the replica surface might result in the formation of a PMMA wetting layer to prevent the presentation of underlying chemical patterns to the replica surface. 展开更多
关键词 Block copolymer Molecular transfer printing Thermal annealing Chemical pattern Directed self-assembly
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部