A patch-based method for detecting vehicle logos using prior knowledge is proposed.By representing the coarse region of the logo with the weight matrix of patch intensity and position,the proposed method is robust to ...A patch-based method for detecting vehicle logos using prior knowledge is proposed.By representing the coarse region of the logo with the weight matrix of patch intensity and position,the proposed method is robust to bad and complex environmental conditions.The bounding-box of the logo is extracted by a thershloding approach.Experimental results show that 93.58% location accuracy is achieved with 1100 images under various environmental conditions,indicating that the proposed method is effective and suitable for the location of vehicle logo in practical applications.展开更多
Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obta...Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.展开更多
Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has ap...Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.展开更多
真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matr...真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matrix Factorization,SeNMF)。首先,该模型设计基于PageRank算法的贪婪搜索方法获取网络的共识先验信息,用以增强每一层网络的拓扑结构,降低网络噪声;然后利用整体非负矩阵分解将所有网络层的低维表示在格拉斯曼流形上融合以获取更优的公共低维表示矩阵;最后利用K-means聚类得到网络的公共社区结构。实验表明,无论是网络层数的增加还是层间噪声的增强,SeNMF模型相较其他算法在多层网络聚类时均具有一定的优越性。展开更多
文摘A patch-based method for detecting vehicle logos using prior knowledge is proposed.By representing the coarse region of the logo with the weight matrix of patch intensity and position,the proposed method is robust to bad and complex environmental conditions.The bounding-box of the logo is extracted by a thershloding approach.Experimental results show that 93.58% location accuracy is achieved with 1100 images under various environmental conditions,indicating that the proposed method is effective and suitable for the location of vehicle logo in practical applications.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘Based on equivalence relation,the classical rough set theory is unable to deal with incomplete information systems.In this case,an extended rough set model based on valued tolerance relation and prior probability obtained from incomplete information systems is firstly founded.As a part of the model,the corresponding discernibility matrix and an attribute reduction of incomplete information system are then proposed.Finally,the extended rough set model and the proposed attribute reduction algorithm are verified under an incomplete information system.
文摘Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data. NMF has applications in image processing, text mining, recommendation systems and a variety of other fields. Since its inception, the NMF algorithm has been modified and explored by numerous authors. One such modification involves the addition of auxiliary constraints to the objective function of the factorization. The purpose of these auxiliary constraints is to impose task-specific penalties or restrictions on the objective function. Though many auxiliary constraints have been studied, none have made use of data-dependent penalties. In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints. We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.
文摘真实世界多层网络具有多维度、高复杂性的特征,使得仅使用网络拓扑信息进行聚类的算法往往不能精准挖掘网络的公共社区结构。为了解决这一问题,本文提出一种基于非负矩阵分解的半监督模型(Semi-supervised Model with Non-negative Matrix Factorization,SeNMF)。首先,该模型设计基于PageRank算法的贪婪搜索方法获取网络的共识先验信息,用以增强每一层网络的拓扑结构,降低网络噪声;然后利用整体非负矩阵分解将所有网络层的低维表示在格拉斯曼流形上融合以获取更优的公共低维表示矩阵;最后利用K-means聚类得到网络的公共社区结构。实验表明,无论是网络层数的增加还是层间噪声的增强,SeNMF模型相较其他算法在多层网络聚类时均具有一定的优越性。
基金Supported by the National Natural Science Foundation of China under Grant No.60875031(国家自然科学基金)the National Basic Research Program of China under Grant No.2007CB311002(国家重点基础研究发展计划(973))+2 种基金the Program for New Century Excellent Talents in University of china under Grant No.NECT-06-0078(新世纪优秀人才支持计划)the Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China under Grant No.20050004008(教育部高等学校博士学科点专项科研基金)the Fok Ying-Tbng Education Foundation for Young Teachers in the Higher Education Instirutions of China under Grant No.101068(霍英东教育基金会高等院校青年教师基金)