期刊文献+
共找到6,071篇文章
< 1 2 250 >
每页显示 20 50 100
On the Local Convergence and Dynamics of New Iterative Method with Sixth Order Convergence
1
作者 Lyu Borui Chu Xue Wang Haijun 《数学理论与应用》 2024年第3期50-66,共17页
In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity o... In this paper,we construct a new sixth order iterative method for solving nonlinear equations.The local convergence and order of convergence of the new iterative method is demonstrated.In order to check the validity of the new iterative method,we employ several chemical engineering applications and academic test problems.Numerical results show the good numerical performance of the new iterative method.Moreover,the dynamical study of the new method also supports the theoretical results. 展开更多
关键词 Nonlinear equation Sixth order method Local convergence Basin of attraction
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
2
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional Differential Equations System of Fractional order BVPs Weighted Residual methods Modified Legendre Polynomials
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
3
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-order Differential Equations Picard method Taylor Series method Numerical Solutions Numerical Examples MATLAB Software
下载PDF
A Hybrid ESA-CCD Method for Variable-Order Time-Fractional Diffusion Equations
4
作者 Xiaoxue Lu Chunhua Zhang +1 位作者 Huiling Xue Bowen Zhong 《Journal of Applied Mathematics and Physics》 2024年第9期3053-3065,共13页
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a... In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments. 展开更多
关键词 Variable-order Caputo Fractional Derivative Combined Compact Difference method Exponential-Sum-Approximation
下载PDF
Error Analysis of A New Higher Order Boundary Element Method for A Uniform Flow Passing Cylinders
5
作者 SUN Shi-yan CUI Jie BAO Chao-ming 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期369-377,共9页
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten... A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM. 展开更多
关键词 higher order boundary element method(HOBEM) error analysis integral equations for potential and velocity cylinders
下载PDF
Efficient Decomposition Shooting Method for Solving Third-Order Boundary Value Problems
6
作者 Nawal Al-Zaid Kholoud Alzahrani +1 位作者 Huda Bakodah Mariam Al-Mazmumy 《International Journal of Modern Nonlinear Theory and Application》 2023年第3期81-98,共18页
The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and... The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables. 展开更多
关键词 Linear Third order BVPs Shooting method Adomian Decomposition method Two-Point Boundary Value Problem
下载PDF
An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic
7
作者 Remi Abgrall Fatemeh Nassajian Mojarrad 《Communications on Applied Mathematics and Computation》 EI 2024年第2期963-991,共29页
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the... We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions. 展开更多
关键词 Kinetic scheme Compressible fluid dynamics High order methods Explicit schemes Asymptotic preserving Defect correction method
下载PDF
Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives
8
作者 Nasser Sweilam Seham Al-Mekhlafi +2 位作者 Aya Ahmed Ahoud Alsheri Emad Abo-Eldahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1619-1645,共27页
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators... In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings. 展开更多
关键词 Cancer diseases hybrid variable-order fractional derivatives adams bashfourth fifth step generalized fifth order Runge-Kutta method
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
9
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving Discontinuous Galerkin(DG)method High order accuracy
下载PDF
Galerkin-Bernstein Approximations for the System of Third-Order Nonlinear Boundary Value Problems
10
作者 Snigdha Dhar Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第6期2083-2101,共19页
This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We der... This paper is devoted to find the numerical solutions of one dimensional general nonlinear system of third-order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual method. We derive mathematical formulations in matrix form, in detail, by exploiting Bernstein polynomials as basis functions. A reasonable accuracy is found when the proposed method is used on few examples. At the end of the study, a comparison is made between the approximate and exact solutions, and also with the solutions of the existing methods. Our results converge monotonically to the exact solutions. In addition, we show that the derived formulations may be applicable by reducing higher order complicated BVP into a lower order system of BVPs, and the performance of the numerical solutions is satisfactory. . 展开更多
关键词 System of Third-order BVP Galerkin method Bernstein Polynomials Nonlinear BVP Higher-order BVP
下载PDF
High-Order Soliton Solutions and Hybrid Behavior for the (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations
11
作者 Xingying Li Yin Ji 《Journal of Applied Mathematics and Physics》 2024年第7期2452-2466,共15页
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ... In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons. 展开更多
关键词 Konopelchenko-Dubrovsky Equations Hirota Bilinear method M-order Lump Solutions High-order Hybrid Solutions Interaction Behavior
下载PDF
Establishment of a Fractional Order COVID-19 Model and Its Feasibility Analysis
12
作者 Rong Kang Tianzeng Li Yu Zhao 《Journal of Computer and Communications》 2024年第10期62-77,共16页
This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system... This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission. 展开更多
关键词 Grid Approximation method COVID-19 Infectious Disease Model Fractional-order Derivative
下载PDF
Focused Wave Properties Based on A High Order Spectral Method with A Non-Periodic Boundary 被引量:10
13
作者 李金宣 柳淑学 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期1-16,共16页
In this paper, a numerical model is developed based on the High Order Spectral (HOS) method with a non-periodic boundary. A wave maker boundary condition is introduced to simulate wave generation at the incident bou... In this paper, a numerical model is developed based on the High Order Spectral (HOS) method with a non-periodic boundary. A wave maker boundary condition is introduced to simulate wave generation at the incident boundary in the HOS method. Based on the numerical model, the effects of wave parameters, such as the assumed focused amplitude, the central frequency, the frequency bandwidth, the wave amplitude distribution and the directional spreading on the surface elevation of the focused wave, the maximum generated wave crest, and the shifting of the focusing point, are numerically investigated. Especially, the effects of the wave directionality on the focused wave properties are emphasized. The numerical results show that the shifting of the focusing point and the maximum crest of the wave group are dependent on the amplitude of the focused wave, the central frequency, and the wave amplitude distribution type. The wave directionality has a definite effect on multidirectional focused waves. Generally, it can even out the difference between the simulated wave amplitude and the amplitude expected from theory and reduce the shifting of the focusing points, implying that the higher order interaction has an influence on wave focusing, especially for 2D wave. In 3D wave groups, a broader directional spreading weakens the higher nonlinear interactions. 展开更多
关键词 focused wave high order spectral method numerical model
下载PDF
MAOR method for the generalized—order linear complementarity problems
14
作者 祝凤清 彭永清 周永华 《中国西部科技》 2009年第4期9-12,共4页
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa... The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices. 展开更多
关键词 Maor迭代算法 线性系统 矩阵 计算方法
下载PDF
A Family of Fifth-order Iterative Methods for Solving Nonlinear Equations 被引量:4
15
作者 Liu Tian-Bao Cai Hua Li Yong 《Communications in Mathematical Research》 CSCD 2013年第3期255-260,共6页
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order... In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects. 展开更多
关键词 Newton's method iterative method nonlinear equation order of convergence
下载PDF
HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS 被引量:4
16
作者 Wang Tongke(王同科) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第2期213-225,共13页
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me... In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective. 展开更多
关键词 SECOND order ordinary differential equation TWO-POINT boundary value problem high accuracy finite volume element method error estimate.
下载PDF
Numerical storm surge model with higher order finite difference method of lines for the coast of Bangladesh 被引量:2
17
作者 Gour Chandra Paul Md. Emran Ali 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第6期100-116,共17页
In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs... In this study, the method of lines (MOLs) with higher order central difference approximation method coupled with the classical fourth order Runge-Kutta (RK(4,4)) method is used in solving shallow water equations (SWEs) in Cartesian coordinates to foresee water levels associated with a storm accurately along the coast of Bangladesh. In doing so, the partial derivatives of the SWEs with respect to the space variables were discretized with 5-point central difference, as a test case, to obtain a system of ordinary differential equations with time as an independent variable for every spatial grid point, which with initial conditions were solved by the RK(4,4) method. The complex land-sea interface and bottom topographic details were incorporated closely using nested schemes. The coastal and island boundaries were rectangularized through proper stair step representation, and the storing positions of the scalar and momentum variables were specified according to the rules of structured C-grid. A stable tidal regime was made over the model domain considering the effect of the major tidal constituent, M2 along the southern open boundary of the outermost parent scheme. The Meghna River fresh water discharge was taken into account for the inner most child scheme. To take into account the dynamic interaction of tide and surge, the generated tidal regime was introduced as the initial state of the sea, and the surge was then made to come over it through computer simulation. Numerical experiments were performed with the cyclone April 1991 to simulate water levels due to tide, surge, and their interaction at different stations along the coast of Bangladesh. Our computed results were found to compare reasonable well with the limited observed data obtained from Bangladesh Inland Water Transport Authority (BIWTA) and were found to be better in comparison with the results obtained through the regular finite difference method and the 3-point central difference MOLs coupled with the RK(4,4) method with regard to the root mean square error values. 展开更多
关键词 SHALLOW water equations method of lines higher order finite difference approximation method SURGE nested scheme
下载PDF
Hermite WENO-based limiters for high order discontinuous Galerkin method on unstructured grids 被引量:4
18
作者 Zhen-Hua Jiang Chao Yan +1 位作者 Jian Yu Wu Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期241-252,共12页
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method o... A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomi- als, termed as HWENO schemes, is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids. The developed HWENO methodology utilizes high-order derivative information to keep WENO re- construction stencils in the von Neumann neighborhood. A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils, making higher-order scheme stable and simplifying the reconstruction process at the same time. The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement. Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy, the designed HWENO limiters can simul- taneously obtain uniform high order accuracy and sharp, es- sentially non-oscillatory shock transition. 展开更多
关键词 Discontinuous Galerkin method LIMITERS WENO. High order accuracy. Unstructured grids
下载PDF
Re-study on Recurrence Period of Stokes Wave Train with High Order Spectral Method 被引量:4
19
作者 陶爱峰 郑金海 +1 位作者 MEE Mee Soe 陈波涛 《China Ocean Engineering》 SCIE EI 2011年第4期679-686,共8页
Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process an... Owing to the Benjamin-Feir instability, the Stokes wave train experiences a modulation-demodulation process, and presents a recurrence characteristics. Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schrodinger equation (NLS). However, NLS has limitations on the narrow band and the weak nonlinearity. The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral (HOS) method, which can be applied for the direct phase- resolved simulation of the nonlinear wave train evolution. It is found that the Stiassnie and Shemer's formula should be modified in the cases with most unstable initial conditions, which is important for such topics as the generation mechanisms of freak waves. A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details. 展开更多
关键词 Benjamin-Feir instability High order Spectral (HOS) method recurrence period nonlinear wave-wave interaction
下载PDF
Self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order 被引量:4
20
作者 袁驷 邢沁妍 +1 位作者 王旭 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第5期591-602,共12页
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele... Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 展开更多
关键词 finite element method (FEM) self-adaptive solution super-convergence optimal convergence order element energy projection condensed shape functions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部