期刊文献+
共找到14,154篇文章
< 1 2 250 >
每页显示 20 50 100
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
1
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing privacy-preserving data evaluation IOT blockchain
下载PDF
Evolutionary privacy-preserving learning strategies for edge-based IoT data sharing schemes 被引量:8
2
作者 Yizhou Shen Shigen Shen +3 位作者 Qi Li Haiping Zhou Zongda Wu Youyang Qu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期906-919,共14页
The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high freq... The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared. 展开更多
关键词 Privacy preservation Internet of things Evolutionary game data sharing Edge computing
下载PDF
EG-STC: An Efficient Secure Two-Party Computation Scheme Based on Embedded GPU for Artificial Intelligence Systems
3
作者 Zhenjiang Dong Xin Ge +2 位作者 Yuehua Huang Jiankuo Dong Jiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4021-4044,共24页
This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.W... This paper presents a comprehensive exploration into the integration of Internet of Things(IoT),big data analysis,cloud computing,and Artificial Intelligence(AI),which has led to an unprecedented era of connectivity.We delve into the emerging trend of machine learning on embedded devices,enabling tasks in resource-limited environ-ments.However,the widespread adoption of machine learning raises significant privacy concerns,necessitating the development of privacy-preserving techniques.One such technique,secure multi-party computation(MPC),allows collaborative computations without exposing private inputs.Despite its potential,complex protocols and communication interactions hinder performance,especially on resource-constrained devices.Efforts to enhance efficiency have been made,but scalability remains a challenge.Given the success of GPUs in deep learning,lever-aging embedded GPUs,such as those offered by NVIDIA,emerges as a promising solution.Therefore,we propose an Embedded GPU-based Secure Two-party Computation(EG-STC)framework for Artificial Intelligence(AI)systems.To the best of our knowledge,this work represents the first endeavor to fully implement machine learning model training based on secure two-party computing on the Embedded GPU platform.Our experimental results demonstrate the effectiveness of EG-STC.On an embedded GPU with a power draw of 5 W,our implementation achieved a secure two-party matrix multiplication throughput of 5881.5 kilo-operations per millisecond(kops/ms),with an energy efficiency ratio of 1176.3 kops/ms/W.Furthermore,leveraging our EG-STC framework,we achieved an overall time acceleration ratio of 5–6 times compared to solutions running on server-grade CPUs.Our solution also exhibited a reduced runtime,requiring only 60%to 70%of the runtime of previously best-known methods on the same platform.In summary,our research contributes to the advancement of secure and efficient machine learning implementations on resource-constrained embedded devices,paving the way for broader adoption of AI technologies in various applications. 展开更多
关键词 Secure two-party computation embedded GPU acceleration privacy-preserving machine learning edge computing
下载PDF
Redundant Data Detection and Deletion to Meet Privacy Protection Requirements in Blockchain-Based Edge Computing Environment
4
作者 Zhang Lejun Peng Minghui +6 位作者 Su Shen Wang Weizheng Jin Zilong Su Yansen Chen Huiling Guo Ran Sergey Gataullin 《China Communications》 SCIE CSCD 2024年第3期149-159,共11页
With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for clou... With the rapid development of information technology,IoT devices play a huge role in physiological health data detection.The exponential growth of medical data requires us to reasonably allocate storage space for cloud servers and edge nodes.The storage capacity of edge nodes close to users is limited.We should store hotspot data in edge nodes as much as possible,so as to ensure response timeliness and access hit rate;However,the current scheme cannot guarantee that every sub-message in a complete data stored by the edge node meets the requirements of hot data;How to complete the detection and deletion of redundant data in edge nodes under the premise of protecting user privacy and data dynamic integrity has become a challenging problem.Our paper proposes a redundant data detection method that meets the privacy protection requirements.By scanning the cipher text,it is determined whether each sub-message of the data in the edge node meets the requirements of the hot data.It has the same effect as zero-knowledge proof,and it will not reveal the privacy of users.In addition,for redundant sub-data that does not meet the requirements of hot data,our paper proposes a redundant data deletion scheme that meets the dynamic integrity of the data.We use Content Extraction Signature(CES)to generate the remaining hot data signature after the redundant data is deleted.The feasibility of the scheme is proved through safety analysis and efficiency analysis. 展开更多
关键词 blockchain data integrity edge computing privacy protection redundant data
下载PDF
VPFL:A verifiable privacy-preserving federated learning scheme for edge computing systems 被引量:2
5
作者 Jiale Zhang Yue Liu +3 位作者 Di Wu Shuai Lou Bing Chen Shui Yu 《Digital Communications and Networks》 SCIE CSCD 2023年第4期981-989,共9页
Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the centra... Federated learning for edge computing is a promising solution in the data booming era,which leverages the computation ability of each edge device to train local models and only shares the model gradients to the central server.However,the frequently transmitted local gradients could also leak the participants’private data.To protect the privacy of local training data,lots of cryptographic-based Privacy-Preserving Federated Learning(PPFL)schemes have been proposed.However,due to the constrained resource nature of mobile devices and complex cryptographic operations,traditional PPFL schemes fail to provide efficient data confidentiality and lightweight integrity verification simultaneously.To tackle this problem,we propose a Verifiable Privacypreserving Federated Learning scheme(VPFL)for edge computing systems to prevent local gradients from leaking over the transmission stage.Firstly,we combine the Distributed Selective Stochastic Gradient Descent(DSSGD)method with Paillier homomorphic cryptosystem to achieve the distributed encryption functionality,so as to reduce the computation cost of the complex cryptosystem.Secondly,we further present an online/offline signature method to realize the lightweight gradients integrity verification,where the offline part can be securely outsourced to the edge server.Comprehensive security analysis demonstrates the proposed VPFL can achieve data confidentiality,authentication,and integrity.At last,we evaluate both communication overhead and computation cost of the proposed VPFL scheme,the experimental results have shown VPFL has low computation costs and communication overheads while maintaining high training accuracy. 展开更多
关键词 Federated learning Edge computing privacy-preserving Verifiable aggregation Homomorphic cryptosystem
下载PDF
Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing
6
作者 Huixiang Xu 《Computers, Materials & Continua》 SCIE EI 2024年第2期2309-2335,共27页
The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to... The Internet of Things(IoT)has revolutionized how we interact with and gather data from our surrounding environment.IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights.The rapid proliferation of Internet of Things(IoT)devices has ushered in an era of unprecedented data generation and connectivity.These IoT devices,equipped with many sensors and actuators,continuously produce vast volumes of data.However,the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges.However,transmitting all this data to a centralized cloud infrastructure for processing and analysis can be inefficient and impractical due to bandwidth limitations,network latency,and scalability issues.This paper proposed a Self-Learning Internet Traffic Fuzzy Classifier(SLItFC)for traffic data analysis.The proposed techniques effectively utilize clustering and classification procedures to improve classification accuracy in analyzing network traffic data.SLItFC addresses the intricate task of efficiently managing and analyzing IoT data traffic at the edge.It employs a sophisticated combination of fuzzy clustering and self-learning techniques,allowing it to adapt and improve its classification accuracy over time.This adaptability is a crucial feature,given the dynamic nature of IoT environments where data patterns and traffic characteristics can evolve rapidly.With the implementation of the fuzzy classifier,the accuracy of the clustering process is improvised with the reduction of the computational time.SLItFC can reduce computational time while maintaining high classification accuracy.This efficiency is paramount in edge computing,where resource constraints demand streamlined data processing.Additionally,SLItFC’s performance advantages make it a compelling choice for organizations seeking to harness the potential of IoT data for real-time insights and decision-making.With the Self-Learning process,the SLItFC model monitors the network traffic data acquired from the IoT Devices.The Sugeno fuzzy model is implemented within the edge computing environment for improved classification accuracy.Simulation analysis stated that the proposed SLItFC achieves 94.5%classification accuracy with reduced classification time. 展开更多
关键词 Internet of Things(IoT) edge computing traffic data SELF-LEARNING fuzzy-learning
下载PDF
Blockchain-Enabled Secure and Privacy-Preserving Data Aggregation for Fog-Based ITS 被引量:1
7
作者 Siguang Chen Li Yang +1 位作者 Yanhang Shi Qian Wang 《Computers, Materials & Continua》 SCIE EI 2023年第5期3781-3796,共16页
As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to b... As an essential component of intelligent transportation systems(ITS),electric vehicles(EVs)can store massive amounts of electric power in their batteries and send power back to a charging station(CS)at peak hours to balance the power supply and generate profits.However,when the system collects the corresponding power data,several severe security and privacy issues are encountered.The identity and private injection data may be maliciously intercepted by network attackers and be tampered with to damage the services of ITS and smart grids.Existing approaches requiring high computational overhead render them unsuitable for the resource-constrained Internet of Things(IoT)environment.To address above problems,this paper proposes a blockchain-enabled secure and privacy-preserving data aggregation scheme for fog-based ITS.First,a fog computing and blockchain co-aware aggregation framework of power injection data is designed,which provides strong support for ITS to achieve secure and efficient power injection.Second,Paillier homomorphic encryption,the batch aggregation signature mechanism and a Bloom filter are effectively integrated with efficient aggregation of power injection data with security and privacy guarantees.In addition,the fine-grained homomorphic aggregation is designed for power injection data generated by all EVs,which provides solid data support for accurate power dispatching and supply management in ITS.Experiments show that the total computational cost is significantly reduced in the proposed scheme while providing security and privacy guarantees.The proposed scheme is more suitable for ITS with latency-sensitive applications and is also adapted to deploying devices with limited resources. 展开更多
关键词 Blockchain fog computing security privacy-preserving ITS
下载PDF
Privacy-Preserving Deep Learning on Big Data in Cloud
8
作者 Yongkai Fan Wanyu Zhang +2 位作者 Jianrong Bai Xia Lei Kuanching Li 《China Communications》 SCIE CSCD 2023年第11期176-186,共11页
In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a ... In the analysis of big data,deep learn-ing is a crucial technique.Big data analysis tasks are typically carried out on the cloud since it offers strong computer capabilities and storage areas.Nev-ertheless,there is a contradiction between the open nature of the cloud and the demand that data own-ers maintain their privacy.To use cloud resources for privacy-preserving data training,a viable method must be found.A privacy-preserving deep learning model(PPDLM)is suggested in this research to ad-dress this preserving issue.To preserve data privacy,we first encrypted the data using homomorphic en-cryption(HE)approach.Moreover,the deep learn-ing algorithm’s activation function—the sigmoid func-tion—uses the least-squares method to process non-addition and non-multiplication operations that are not allowed by homomorphic.Finally,experimental re-sults show that PPDLM has a significant effect on the protection of data privacy information.Compared with Non-Privacy Preserving Deep Learning Model(NPPDLM),PPDLM has higher computational effi-ciency. 展开更多
关键词 big data cloud computing deep learning homomorphic encryption privacy-preserving
下载PDF
A New Privacy-Preserving Data Publishing Algorithm Utilizing Connectivity-Based Outlier Factor and Mondrian Techniques
9
作者 Burak Cem Kara Can Eyüpoglu 《Computers, Materials & Continua》 SCIE EI 2023年第8期1515-1535,共21页
Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off betw... Developing a privacy-preserving data publishing algorithm that stops individuals from disclosing their identities while not ignoring data utility remains an important goal to achieve.Because finding the trade-off between data privacy and data utility is an NP-hard problem and also a current research area.When existing approaches are investigated,one of the most significant difficulties discovered is the presence of outlier data in the datasets.Outlier data has a negative impact on data utility.Furthermore,k-anonymity algorithms,which are commonly used in the literature,do not provide adequate protection against outlier data.In this study,a new data anonymization algorithm is devised and tested for boosting data utility by incorporating an outlier data detection mechanism into the Mondrian algorithm.The connectivity-based outlier factor(COF)algorithm is used to detect outliers.Mondrian is selected because of its capacity to anonymize multidimensional data while meeting the needs of real-world data.COF,on the other hand,is used to discover outliers in high-dimensional datasets with complicated structures.The proposed algorithm generates more equivalence classes than the Mondrian algorithm and provides greater data utility than previous algorithms based on k-anonymization.In addition,it outperforms other algorithms in the discernibility metric(DM),normalized average equivalence class size(Cavg),global certainty penalty(GCP),query error rate,classification accuracy(CA),and F-measure metrics.Moreover,the increase in the values of theGCPand error ratemetrics demonstrates that the proposed algorithm facilitates obtaining higher data utility by grouping closer data points when compared to other algorithms. 展开更多
关键词 data anonymization privacy-preserving data publishing K-ANONYMITY GENERALIZATION MONDRIAN
下载PDF
Towards Developing Privacy-Preserved Data Security Approach(PP-DSA)in Cloud Computing Environment
10
作者 S.Stewart Kirubakaran V.P.Arunachalam +1 位作者 S.Karthik S.K annan 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1881-1895,共15页
In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several ... In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works. 展开更多
关键词 Third-party auditor(TPA) efficient auditing technique(EAT) cloud service provider(CSP) data user(DU) data security privacy-preserving cloud computing cloud security
下载PDF
Multi Attribute Case Based Privacy-preserving for Healthcare Transactional Data Using Cryptography
11
作者 K.Saranya K.Premalatha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2029-2042,共14页
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ... Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting. 展开更多
关键词 privacy-preserving crypto policy medical data mining integrity and verification personalized records CRYPTOGRAPHY
下载PDF
On the Privacy-Preserving Outsourcing Scheme of Reversible Data Hiding over Encrypted Image Data in Cloud Computing 被引量:11
12
作者 Lizhi Xiong Yunqing Shi 《Computers, Materials & Continua》 SCIE EI 2018年第6期523-539,共17页
Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the clou... Advanced cloud computing technology provides cost saving and flexibility of services for users.With the explosion of multimedia data,more and more data owners would outsource their personal multimedia data on the cloud.In the meantime,some computationally expensive tasks are also undertaken by cloud servers.However,the outsourced multimedia data and its applications may reveal the data owner’s private information because the data owners lose the control of their data.Recently,this thought has aroused new research interest on privacy-preserving reversible data hiding over outsourced multimedia data.In this paper,two reversible data hiding schemes are proposed for encrypted image data in cloud computing:reversible data hiding by homomorphic encryption and reversible data hiding in encrypted domain.The former is that additional bits are extracted after decryption and the latter is that extracted before decryption.Meanwhile,a combined scheme is also designed.This paper proposes the privacy-preserving outsourcing scheme of reversible data hiding over encrypted image data in cloud computing,which not only ensures multimedia data security without relying on the trustworthiness of cloud servers,but also guarantees that reversible data hiding can be operated over encrypted images at the different stages.Theoretical analysis confirms the correctness of the proposed encryption model and justifies the security of the proposed scheme.The computation cost of the proposed scheme is acceptable and adjusts to different security levels. 展开更多
关键词 Cloud data security re-encryption reversible data hiding cloud computing privacy-preserving.
下载PDF
A Retrievable Data Perturbation Method Used in Privacy-Preserving in Cloud Computing 被引量:3
13
作者 YANG Pan 《China Communications》 SCIE CSCD 2014年第8期73-84,共12页
With the increasing popularity of cloud computing,privacy has become one of the key problem in cloud security.When data is outsourced to the cloud,for data owners,they need to ensure the security of their privacy;for ... With the increasing popularity of cloud computing,privacy has become one of the key problem in cloud security.When data is outsourced to the cloud,for data owners,they need to ensure the security of their privacy;for cloud service providers,they need some information of the data to provide high QoS services;and for authorized users,they need to access to the true value of data.The existing privacy-preserving methods can't meet all the needs of the three parties at the same time.To address this issue,we propose a retrievable data perturbation method and use it in the privacy-preserving in data outsourcing in cloud computing.Our scheme comes in four steps.Firstly,an improved random generator is proposed to generate an accurate "noise".Next,a perturbation algorithm is introduced to add noise to the original data.By doing this,the privacy information is hidden,but the mean and covariance of data which the service providers may need remain unchanged.Then,a retrieval algorithm is proposed to get the original data back from the perturbed data.Finally,we combine the retrievable perturbation with the access control process to ensure only the authorized users can retrieve the original data.The experiments show that our scheme perturbs date correctly,efficiently,and securely. 展开更多
关键词 privacy-preserving data perturbation RETRIEVAL access control cloudcomputing
下载PDF
Distributed Computation Models for Data Fusion System Simulation
14
作者 张岩 曾涛 +1 位作者 龙腾 崔智社 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期291-297,共7页
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan... An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques. 展开更多
关键词 radar system computer network data fusion SIMULATION distributed computation
下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
15
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing Hybridized data Driven Cognitive computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
下载PDF
A Privacy-Preserving Mechanism Based on Local Differential Privacy in Edge Computing 被引量:7
16
作者 Mengnan Bi Yingjie Wang +1 位作者 Zhipeng Cai Xiangrong Tong 《China Communications》 SCIE CSCD 2020年第9期50-65,共16页
With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT t... With the development of Internet of Things(IoT),the delay caused by network transmission has led to low data processing efficiency.At the same time,the limited computing power and available energy consumption of IoT terminal devices are also the important bottlenecks that would restrict the application of blockchain,but edge computing could solve this problem.The emergence of edge computing can effectively reduce the delay of data transmission and improve data processing capacity.However,user data in edge computing is usually stored and processed in some honest-but-curious authorized entities,which leads to the leakage of users’privacy information.In order to solve these problems,this paper proposes a location data collection method that satisfies the local differential privacy to protect users’privacy.In this paper,a Voronoi diagram constructed by the Delaunay method is used to divide the road network space and determine the Voronoi grid region where the edge nodes are located.A random disturbance mechanism that satisfies the local differential privacy is utilized to disturb the original location data in each Voronoi grid.In addition,the effectiveness of the proposed privacy-preserving mechanism is verified through comparison experiments.Compared with the existing privacy-preserving methods,the proposed privacy-preserving mechanism can not only better meet users’privacy needs,but also have higher data availability. 展开更多
关键词 Io T edge computing local differential privacy Voronoi diagram privacy-preserving
下载PDF
A Survey on the Privacy-Preserving Data Aggregation in Wireless Sensor Networks 被引量:4
17
作者 XU Jian YANG Geng +1 位作者 CHEN Zhengyu WANG Qianqian 《China Communications》 SCIE CSCD 2015年第5期162-180,共19页
Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to s... Wireless sensor networks(WSNs)consist of a great deal of sensor nodes with limited power,computation,storage,sensing and communication capabilities.Data aggregation is a very important technique,which is designed to substantially reduce the communication overhead and energy expenditure of sensor node during the process of data collection in a WSNs.However,privacy-preservation is more challenging especially in data aggregation,where the aggregators need to perform some aggregation operations on sensing data it received.We present a state-of-the art survey of privacy-preserving data aggregation in WSNs.At first,we classify the existing privacy-preserving data aggregation schemes into different categories by the core privacy-preserving techniques used in each scheme.And then compare and contrast different algorithms on the basis of performance measures such as the privacy protection ability,communication consumption,power consumption and data accuracy etc.Furthermore,based on the existing work,we also discuss a number of open issues which may intrigue the interest of researchers for future work. 展开更多
关键词 wireless sensor networks data aggregation privacy-preserving
下载PDF
Improved Harris Hawks Optimization Algorithm Based Data Placement Strategy for Integrated Cloud and Edge Computing
18
作者 V.Nivethitha G.Aghila 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期887-904,共18页
Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially l... Cloud computing is considered to facilitate a more cost-effective way to deploy scientific workflows.The individual tasks of a scientific work-flow necessitate a diversified number of large states that are spatially located in different datacenters,thereby resulting in huge delays during data transmis-sion.Edge computing minimizes the delays in data transmission and supports the fixed storage strategy for scientific workflow private datasets.Therefore,this fixed storage strategy creates huge amount of bottleneck in its storage capacity.At this juncture,integrating the merits of cloud computing and edge computing during the process of rationalizing the data placement of scientific workflows and optimizing the energy and time incurred in data transmission across different datacentres remains a challenge.In this paper,Adaptive Cooperative Foraging and Dispersed Foraging Strategies-Improved Harris Hawks Optimization Algorithm(ACF-DFS-HHOA)is proposed for optimizing the energy and data transmission time in the event of placing data for a specific scientific workflow.This ACF-DFS-HHOA considered the factors influencing transmission delay and energy consumption of data centers into account during the process of rationalizing the data placement of scientific workflows.The adaptive cooperative and dispersed foraging strategy is included in HHOA to guide the position updates that improve population diversity and effectively prevent the algorithm from being trapped into local optimality points.The experimental results of ACF-DFS-HHOA confirmed its predominance in minimizing energy and data transmission time incurred during workflow execution. 展开更多
关键词 Edge computing cloud computing scientific workflow data placement energy of datacenters data transmission time
下载PDF
A Secure Method for Data Storage and Transmission in Sustainable Cloud Computing
19
作者 Muhammad Usman Sana Zhanli Li +3 位作者 Tayybah Kiren Hannan Bin Liaqat Shahid Naseem Atif Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第5期2741-2757,共17页
Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encrypt... Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encryption and decryption algorithms are being deployed.In cloud computation,data processing,storage,and transmission can be done through laptops andmobile devices.Data Storing in cloud facilities is expanding each day and data is the most significant asset of clients.The important concern with the transmission of information to the cloud is security because there is no perceivability of the client’s data.They have to be dependent on cloud service providers for assurance of the platform’s security.Data security and privacy issues reduce the progression of cloud computing and add complexity.Nowadays;most of the data that is stored on cloud servers is in the form of images and photographs,which is a very confidential form of data that requires secured transmission.In this research work,a public key cryptosystem is being implemented to store,retrieve and transmit information in cloud computation through a modified Rivest-Shamir-Adleman(RSA)algorithm for the encryption and decryption of data.The implementation of a modified RSA algorithm results guaranteed the security of data in the cloud environment.To enhance the user data security level,a neural network is used for user authentication and recognition.Moreover;the proposed technique develops the performance of detection as a loss function of the bounding box.The Faster Region-Based Convolutional Neural Network(Faster R-CNN)gets trained on images to identify authorized users with an accuracy of 99.9%on training. 展开更多
关键词 Cloud computing data security RSA algorithm Faster R-CNN
下载PDF
Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data
20
作者 Baoling Qin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期255-267,共13页
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie... Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level. 展开更多
关键词 Medical big data IOT fog computing distributed computing BP algorithm model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部