We set in this paper a coherent theory based on functional empirical processes that allows to consider both the poverty and the inequality indices in one Gaussian field in which the study of the influence of the one o...We set in this paper a coherent theory based on functional empirical processes that allows to consider both the poverty and the inequality indices in one Gaussian field in which the study of the influence of the one over the other is done. We use the General Poverty Index (GPI), that is a class of poverty indices gathering the most common ones and a functional class of inequality measures including the Entropy Measure, the Mean Logarithmic Deviation, the different inequality measures of Atkinson, Champernowne, Kolm and Theil called Theil-Like Inequality Measures (TLIM). Our results are given in a unified approach with respect to the two classes instead of their particular elements. We provide the asymptotic laws of the variations of each class over two given periods and the ratio of the variation and derive confidence intervals for them. Although the variances may seem somehow complicated, we provide R codes for their computations and apply the results for the pseudo-panel data for Senegalwith a simple analysis.展开更多
文摘We set in this paper a coherent theory based on functional empirical processes that allows to consider both the poverty and the inequality indices in one Gaussian field in which the study of the influence of the one over the other is done. We use the General Poverty Index (GPI), that is a class of poverty indices gathering the most common ones and a functional class of inequality measures including the Entropy Measure, the Mean Logarithmic Deviation, the different inequality measures of Atkinson, Champernowne, Kolm and Theil called Theil-Like Inequality Measures (TLIM). Our results are given in a unified approach with respect to the two classes instead of their particular elements. We provide the asymptotic laws of the variations of each class over two given periods and the ratio of the variation and derive confidence intervals for them. Although the variances may seem somehow complicated, we provide R codes for their computations and apply the results for the pseudo-panel data for Senegalwith a simple analysis.