In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeuvring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The...In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeuvring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The aim of the proposed procedure is an efficient estimation of optimal ship hydrodynamic parameters in a dynamic model at the early design stage. The proposed procedure has been validated through turning circle and zigzag manoeuvres based on experimental data of sea trials of the 190 000- dwt oil tanker. Comparisons between experimental and computed data show a good agreement of overall tendency in manoeuvring traiectories.展开更多
Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized...Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized through culturing and gram staining techniques were used for the identification of different bacterial strains. Methods: A total of 324 samples were collected from patients, after they were diagnosed by physicians at different hospitals at district Peshawar. Samples were morphologically identified by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining techniques. Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics. Results: The non-lactose fermenting gram negative bacteria were isolated from samples of blood (33.30%), pus/ wound (33.30%), urine (23.30%) and from ascetic/pleural fluids (10.20%). The study revealed that Pseudomonas aeroginosa showed high resistance against Gentamicin (74%) and Aztreonam (74%), followed by Ciprofloxacin (59.20%) and Amikacin (33.30). Tazocin was active as low resistance (18.50%) is shown. More resistance was seen in Morganella morganii against Aztreonam (77.7%) followed by Gentamicin (62.90%), Ciprofloxacin (40.70%). Tazocin show low resistance (3.70%). Multidrug resistant Proteus mirabillis was highly resistance to Gentamicin (66.60%), followed by Aztreonam (62.90%), Amikacin (55.50%), Ciprofloxacin (40.20%) and low resistance to Tazocin was (22.20%). Salmonella typhi demonstrated high resistance against Amikacin (62.90%), followed by Aztreonam (48.10%), Tazocin (40.70%). Gentamicin showed low resistance (29.60%), and hence it is more active against S. typhi. Conclusions: It can be concluded from the present study that different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern. This study is a gate way for better and suitable management strategy for the infections caused by non-Lactose fermenting bacteria in the sampling region.展开更多
Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techn...Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techniques while the biochemical characteristics of bacteria were carried out by biochemical test. Methods: A total of 324 samples were collected from suspected patients visiting different hospitals at district Peshawar. For morphological identification, samples of clinical isolates were analyzed by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining and characterized by different biochemical tests. Antibiotic Sensitivity test by Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics such as Ceftazidime, Ceftazidime, Ceftriaxone, Cefepime and Imipenem. Results: These resistant non-lactose fermenting gram negative bacteria were isolated from samples of pus/wound (33.30%, n = 108/324), blood (33.30%, n = 108/324), urine (23.30%, n = 75/324) and from ascetic/pleural fluids (10.20%, n = 33/324). The study revealed that the percentage of non-fermenting bacterial infection was higher in females (53%) as compared to males (47%) along with higher infection observed in the age group of 11 - 30 years. Pseudomonas aeroginosa showed high resistance against Cefepime (88.80%), followed by Cefoperazone (55.50%), Ceftazidime (48.10%), Ceftriaxone (33.30%). Imipenem was active with low resistance (7.40%). More resistance was seen in Morganella morganii against Imipenem (66.70%) followed by Cefoperazone (55.50%), Ceftriaxone (55.50%). Cefepime showed low resistance (11%). Multi-drug resistant Proteus mirabillis was highly resistance to Ceftriaxone (74.07%), followed by Cefepime (59.20%), Cefoperazone (44.40%) and low resistance for Imipenem (25.90%). Salmonella typhi demonstrated high resistance against Imipenem (74.07%), followed by Ceftriaxone (40.70%), Ceftazidime (37.03%). Cefepime showed low resistance (3.70%), hence it is more active against S. typhi. Conclusions: The different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern in the present study. Therefore identification of non-lactose fermenting gram negative bacteria and looking after their resistivity/susceptibility pattern are important for suitable management of the infections caused by them.展开更多
文摘In this paper, a numerical method based on a coupling between a mathematical model of nonlinear transient ship manoeuvring motion in the horizontal plane and Mathematical Programming (MP) techniques is proposed. The aim of the proposed procedure is an efficient estimation of optimal ship hydrodynamic parameters in a dynamic model at the early design stage. The proposed procedure has been validated through turning circle and zigzag manoeuvres based on experimental data of sea trials of the 190 000- dwt oil tanker. Comparisons between experimental and computed data show a good agreement of overall tendency in manoeuvring traiectories.
文摘Purpose: The present studied was performed in order to investigate the drug resistance of different non-lactose fermenting gram negative bacteria from clinical isolates. The bacteria were morphologically characterized through culturing and gram staining techniques were used for the identification of different bacterial strains. Methods: A total of 324 samples were collected from patients, after they were diagnosed by physicians at different hospitals at district Peshawar. Samples were morphologically identified by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining techniques. Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics. Results: The non-lactose fermenting gram negative bacteria were isolated from samples of blood (33.30%), pus/ wound (33.30%), urine (23.30%) and from ascetic/pleural fluids (10.20%). The study revealed that Pseudomonas aeroginosa showed high resistance against Gentamicin (74%) and Aztreonam (74%), followed by Ciprofloxacin (59.20%) and Amikacin (33.30). Tazocin was active as low resistance (18.50%) is shown. More resistance was seen in Morganella morganii against Aztreonam (77.7%) followed by Gentamicin (62.90%), Ciprofloxacin (40.70%). Tazocin show low resistance (3.70%). Multidrug resistant Proteus mirabillis was highly resistance to Gentamicin (66.60%), followed by Aztreonam (62.90%), Amikacin (55.50%), Ciprofloxacin (40.20%) and low resistance to Tazocin was (22.20%). Salmonella typhi demonstrated high resistance against Amikacin (62.90%), followed by Aztreonam (48.10%), Tazocin (40.70%). Gentamicin showed low resistance (29.60%), and hence it is more active against S. typhi. Conclusions: It can be concluded from the present study that different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern. This study is a gate way for better and suitable management strategy for the infections caused by non-Lactose fermenting bacteria in the sampling region.
文摘Purpose: We studied the drug resistance of different microbes from clinical isolates. The morphological characteristics of bacteria were observed through culture characteristics and by carrying out gram staining techniques while the biochemical characteristics of bacteria were carried out by biochemical test. Methods: A total of 324 samples were collected from suspected patients visiting different hospitals at district Peshawar. For morphological identification, samples of clinical isolates were analyzed by blood agar, MacConkey agar and Eosine Methylene Blue, identified by gram staining and characterized by different biochemical tests. Antibiotic Sensitivity test by Modified Kirby-Bauer Disc diffusion method was used to test the in-vitro susceptibility of the identified isolates to different antibiotics such as Ceftazidime, Ceftazidime, Ceftriaxone, Cefepime and Imipenem. Results: These resistant non-lactose fermenting gram negative bacteria were isolated from samples of pus/wound (33.30%, n = 108/324), blood (33.30%, n = 108/324), urine (23.30%, n = 75/324) and from ascetic/pleural fluids (10.20%, n = 33/324). The study revealed that the percentage of non-fermenting bacterial infection was higher in females (53%) as compared to males (47%) along with higher infection observed in the age group of 11 - 30 years. Pseudomonas aeroginosa showed high resistance against Cefepime (88.80%), followed by Cefoperazone (55.50%), Ceftazidime (48.10%), Ceftriaxone (33.30%). Imipenem was active with low resistance (7.40%). More resistance was seen in Morganella morganii against Imipenem (66.70%) followed by Cefoperazone (55.50%), Ceftriaxone (55.50%). Cefepime showed low resistance (11%). Multi-drug resistant Proteus mirabillis was highly resistance to Ceftriaxone (74.07%), followed by Cefepime (59.20%), Cefoperazone (44.40%) and low resistance for Imipenem (25.90%). Salmonella typhi demonstrated high resistance against Imipenem (74.07%), followed by Ceftriaxone (40.70%), Ceftazidime (37.03%). Cefepime showed low resistance (3.70%), hence it is more active against S. typhi. Conclusions: The different species of non-lactose fermenting gram negative bacteria have shown a different resistivity pattern in the present study. Therefore identification of non-lactose fermenting gram negative bacteria and looking after their resistivity/susceptibility pattern are important for suitable management of the infections caused by them.