When the historic probabilistic S-N curves are given under special survival probability and confidence levels and there is no possible to re-test, fatigue reliability analysis at other levels can not be done except fo...When the historic probabilistic S-N curves are given under special survival probability and confidence levels and there is no possible to re-test, fatigue reliability analysis at other levels can not be done except for the special levels. Therefore, the wide applied curves are expected. Monte Carlo reconstruction methods of the test data and the curves are investigated under fatigue life following lognormal distribution. To overcome the non-conservative assessment of existent man-made enlarging the sample size up to thousands, a simulation policy is employed to address the true production where the sample size is controlled less than 20 for material specimens, 10 for structural component specimens and the errors matching the statistical parameters are less than 5 percent. Availability and feasibility of the present methods have been indicated by the reconstruction practice of the test data and curves for 60Si2Mn high strength spring steel of railway industry.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study,...Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.展开更多
Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-li...Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.展开更多
In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environme...In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.展开更多
The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of remo...The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of removing small amplitude cycles proposed in this paper takes into account the randomness of both load and fatigue limit.The probability of the damage occurrence caused by the removed small loads is calculated to ensure that it cannot exceed the given probabilistic tolerance.Accordingly,the omission level is obtained and the truncated spectrum is formed.The unnotched aluminum sheet specimens are used to perform the fatigue test on the original fatigue spectrum and truncated fatigue spectrum of a transporter.The test results show that there is no statistical difference between the test life of the truncated spectrum and that of the original spectrum,which demonstrates the validity of the small-load-omitting method that considers randomness.展开更多
Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration ...Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.展开更多
ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accur...ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.展开更多
The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility...The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.展开更多
With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i....With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.e.,5083-H321 and 6061-T6 aluminum alloy,are studied.Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples.The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials.The fatigue resistances of these two materials were com-pared and a unified principal S-N curve equation was fitted.Two key parameters of the unified principal S-N curve obtained by fitting,Cd is 4222.5,and h is 0.2693.A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S-N curve.Two main fatigue tests of bending and tension were used to verify the unified principal S-N curve equation.The results show that the fatigue life calculated by the unified mean 50%master S-N curve parameters are the closest to the fatigue test results.The reliability,practicability,and generality of the master S-N curve fitting parameters were verified using the test data.The unified principal S-N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.展开更多
基金Project supported by the National High Technology Research and Development Program of China(863 Program) (No.2006AA04Z406)the National Natural Science Foundation of China (Nos.50375130, 50323003 and 50575189)+1 种基金the Special Foundation for the Authors of National Excellent Doctoral Dissertations (No.200234)the Program for New Century Excellent Talents in University(No.NCET040890)
文摘When the historic probabilistic S-N curves are given under special survival probability and confidence levels and there is no possible to re-test, fatigue reliability analysis at other levels can not be done except for the special levels. Therefore, the wide applied curves are expected. Monte Carlo reconstruction methods of the test data and the curves are investigated under fatigue life following lognormal distribution. To overcome the non-conservative assessment of existent man-made enlarging the sample size up to thousands, a simulation policy is employed to address the true production where the sample size is controlled less than 20 for material specimens, 10 for structural component specimens and the errors matching the statistical parameters are less than 5 percent. Availability and feasibility of the present methods have been indicated by the reconstruction practice of the test data and curves for 60Si2Mn high strength spring steel of railway industry.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
基金National Natural Science Foundation of China (60472118) High-tech Research Project of Jiangsu Province (BG2004008)
文摘Based on probabilistic fracture mechanics approach, a new concept of material initial fatigue quality (MIFQ) is developed. Then, the relation between S-N curve and crack propagation curve is studied. From the study, a new durability analysis method is presented. In this method, S-N curve is used to determine crack growth rate under constant amplitude loading and evaluate the effects of different factors on durability and then the structural durability is analyzed. The tests and analyses indicate that this method has lower dependence on testing, and higher accuracy, reliability and generality and is convenient for application.
基金Project was supported by the National Nature Science Foundation of China(51575408).
文摘Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life.
文摘In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)National Natural Science Foundations of China(Nos.52075244,52002181)。
文摘The simplification of fatigue load spectrum,which can effectively reduce experimental cost,is of great importance for structural fatigue tests.By introducing random variables,the probabilistic tolerance method of removing small amplitude cycles proposed in this paper takes into account the randomness of both load and fatigue limit.The probability of the damage occurrence caused by the removed small loads is calculated to ensure that it cannot exceed the given probabilistic tolerance.Accordingly,the omission level is obtained and the truncated spectrum is formed.The unnotched aluminum sheet specimens are used to perform the fatigue test on the original fatigue spectrum and truncated fatigue spectrum of a transporter.The test results show that there is no statistical difference between the test life of the truncated spectrum and that of the original spectrum,which demonstrates the validity of the small-load-omitting method that considers randomness.
基金supported by the Aviation Science Foundation of China(No.20150252003)
文摘Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM &TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.
基金国家自然科学基金资助项目(51178469),National Natural Science Foundation of China(51178469)中南大学中央高校基本科研业务费专项资金资助项目(2017ZZTS593),Fundamental Research Funds for the Central Universities of Central South University(2017ZZTS593)国家自然科学基金高速铁路基础研究联合基金资助项目(U1334203,U1134209)
基金Supported by National Natural Science Foundation of China(Grant Nos.U1534209,51675446)Independent Subject of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
文摘ΔF-N curves are usually used to predict the fatigue life of spot welding in engineering,but they are time-consuming and laborious and not universal.For the purpose of predicting the fatigue life of spot welding accurately and efficiently,tensile-shear fatigue tests were conducted to obtain the fatigue life of spot-welded specimens with different sheet thicknesses combinations.These specimens were simulated by using the finite element method,and the structural stress was theoretically calculated.In the double logarithmic coordinate system,the structural stress-fatigue life(S-N)curve of spot welding was fitted by the least-squares method,based on the quasi-Newton method.The square of the correlation coefficient of the S-N curve was taken as the optimization objective,with the correction coefficients of force,bending moment,spot welding diameter,and sheet thickness as the variables.During the optimization process,three different ways were utilized to get three optimized spot welding S-N curves,which are suitable for different situations.The results show that the fitting effect of the S-N curve is improved,the data points are more compact,and the optimization effect is significant.These S-N curves can be used to predict the fatigue life,which provide the basis for practical engineering application.
基金supported by the National Natural Science Foundation of China(No.51475022)
文摘The fatigue lives of materials and structures at different strain levels show het- eroscedasticity. In addition when the number of test specimens is insufficient, the fatigue strength coefficient and fatigue ductility coefficient of the fitting parameters in the total strain life equa- tion may not have definite physical significance. In this work, a maximum likelihood method for estimating probabilistic strain amplitude fatigue life curves is presented based on the fatigue lives at different strain levels. The proposed method is based on the general basic assumption that the logarithm of fatigue life at an arbitrary strain level is normally distributed. The rela- tionship among the parameters of total strain life equation, monotonic ultimate tensile stress and percentage reduction of area is adopted. The presented approach is finally illustrated by two applications. It is shown that probabilistic strain amplitude-fatigue life curves can be eas- ily estimated based on the maximum likelihood method. The results show that fatigue lives at different strain levels have heteroscedasticity and the values of fatigue strength coefficient and fatigue ductility coefficient obtained by the proposed method are close to those of the true tensile fracture stress and true tensile fracture strain.
基金Supported by Department of Education of Liaoning Province(Grant No.JDL2020019)Dalian High Level Talents Project(Grant No.2017RQ132).
文摘With the popularization of friction stir welding(FSW),5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process.In this study,the fatigue life of friction stir welding with two materials,i.e.,5083-H321 and 6061-T6 aluminum alloy,are studied.Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples.The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials.The fatigue resistances of these two materials were com-pared and a unified principal S-N curve equation was fitted.Two key parameters of the unified principal S-N curve obtained by fitting,Cd is 4222.5,and h is 0.2693.A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S-N curve.Two main fatigue tests of bending and tension were used to verify the unified principal S-N curve equation.The results show that the fatigue life calculated by the unified mean 50%master S-N curve parameters are the closest to the fatigue test results.The reliability,practicability,and generality of the master S-N curve fitting parameters were verified using the test data.The unified principal S-N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.