Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce...In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.展开更多
Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilis...Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.展开更多
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis...The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The int...A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The interconnection probability of the two targets is calculated,the weighted value is processed and the target tracks are obtained.The simulation results show that JPDA algorithm achieves higher tracking accuracy and provides a basis for more targets tracking.展开更多
Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the bli...Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a parallel particle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ falls into the particle cloud formed by any model, the measurementtrack association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.展开更多
The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algo...The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.展开更多
To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle fi...To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.展开更多
A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This pape...A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This paper proposed incorporating spatial information into visual feature, and yields a reliable likelihood description of the observation and prediction. A similarity-ratio is defined to evaluate the effectivity of different similarity measurements in weighing samples. The experimental results demonstrate the effective and robust performance compared with the histogram based tracking in traffic scenes.展开更多
The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always funct...The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data.展开更多
The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly mane...The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.展开更多
Real driving scenarios,due to occlusions and disturbances,provide disordered and noisy measurements,which makes the task of multi-object tracking quite challenging.Conventional approach is to find deterministic data a...Real driving scenarios,due to occlusions and disturbances,provide disordered and noisy measurements,which makes the task of multi-object tracking quite challenging.Conventional approach is to find deterministic data association;however,it has unstable performance in high clutter density.This paper proposes a novel probabilistic tracklet-enhanced multiple object tracker(PTMOT),which integrates Poisson multi-Bernoulli mixture(PMBM)filter with confidence of tracklets.The proposed method is able to realize efficient and robust probabilistic association for 3D multi-object tracking(MOT)and improve the PMBM filter’s continuity by smoothing single target hypothesis with global hypothesis.It consists of two key parts.First,the PMBM tracker based on sets of tracklets is implemented to realize probabilistic fusion of disordered measure-ments.Second,the confidence of tracklets is smoothed through a smoothing-while-filtering approach.Extensive MOT tests on nuScenes tracking dataset demonstrate that the proposed method achieves superior performance in different modalities.展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA11Z227)the Natural Science Foundation of Jiangsu Province of China(No. BK2009352)the Fundamental Research Funds for the Central Universities of China (No. 2010B16414)
文摘In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.
文摘Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.
基金supported by Graduate Funded Project(No.JY2022A017).
文摘The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
文摘A tracking algorithm for multiple-maneuvering targets based on joint probabilistic data association(JPDA)is proposed to improve the accuracy for tracking algorithm of traditional multiple maneuvering targets.The interconnection probability of the two targets is calculated,the weighted value is processed and the target tracks are obtained.The simulation results show that JPDA algorithm achieves higher tracking accuracy and provides a basis for more targets tracking.
基金supported by the Academy Innovation Fund Project (2013QNCX0101)
文摘Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a parallel particle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ falls into the particle cloud formed by any model, the measurementtrack association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.
基金This project was supported by the Defense Pre-Research Project of the‘Tenth Five-Year-Plan’of China (40105010101)
文摘The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
基金Supported by the National Natural Science Foundation of China (60634030), the National Natural Science Foundation of China (60702066, 6097219) and the Natural Science Foundation of Henan Province (092300410158).
文摘To solve the problem of strong nonlinear and motion model switching of maneuvering target tracking system in clutter environment, a novel maneuvering multi-target tracking algorithm based on multiple model particle filter is presented in this paper. The algorithm realizes dynamic combination of multiple model particle filter and joint probabilistic data association algorithm. The rapid expan- sion of computational complexity, caused by the simple combination of the interacting multiple model algorithm and particle filter is solved by introducing model information into the sampling process of particle state, and the effective validation and utilization of echo is accomplished by the joint proba- bilistic data association algorithm. The concrete steps of the algorithm are given, and the theory analysis and simulation results show the validity of the method.
文摘A novel dominant correlogram based particle filter was proposed for an object tracking in visual surveillance. Particle filter outperforms the Kalman filter in non-linear and non-Gaussian estimation problem. This paper proposed incorporating spatial information into visual feature, and yields a reliable likelihood description of the observation and prediction. A similarity-ratio is defined to evaluate the effectivity of different similarity measurements in weighing samples. The experimental results demonstrate the effective and robust performance compared with the histogram based tracking in traffic scenes.
基金the National High Technology Research and Development Program(863) of China(No. 2006AA04A114)
文摘The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data.
基金Project supported by the Technology Foundation for Basic Enhancement Plan,China (No.2021-JCJQ-JJ-0301)the National Major Research and Development Project of China (No.2018YFE0206500)+1 种基金the National Natural Science Foundation of China (No.62071140)the National Special for International Scientific and Technological Cooperation of China (No.2015DFR10220)。
文摘The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.
基金supported by International Science and Technology Cooperation Program of China(2019YFE0100200)in part by National Natural Science Foundation of China(61903220)National Natural Science Foundation of China(U1864203).
文摘Real driving scenarios,due to occlusions and disturbances,provide disordered and noisy measurements,which makes the task of multi-object tracking quite challenging.Conventional approach is to find deterministic data association;however,it has unstable performance in high clutter density.This paper proposes a novel probabilistic tracklet-enhanced multiple object tracker(PTMOT),which integrates Poisson multi-Bernoulli mixture(PMBM)filter with confidence of tracklets.The proposed method is able to realize efficient and robust probabilistic association for 3D multi-object tracking(MOT)and improve the PMBM filter’s continuity by smoothing single target hypothesis with global hypothesis.It consists of two key parts.First,the PMBM tracker based on sets of tracklets is implemented to realize probabilistic fusion of disordered measure-ments.Second,the confidence of tracklets is smoothed through a smoothing-while-filtering approach.Extensive MOT tests on nuScenes tracking dataset demonstrate that the proposed method achieves superior performance in different modalities.