In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
The recent outbreak of COVID-19 has caused millions of deaths worldwide and a huge societal and economic impact in virtually all countries. A large variety of mathematical models to describe the dynamics of COVID-19 t...The recent outbreak of COVID-19 has caused millions of deaths worldwide and a huge societal and economic impact in virtually all countries. A large variety of mathematical models to describe the dynamics of COVID-19 transmission have been reported. Among them, Bayesian probabilistic models of COVID-19 transmission dynamics have been very efficient in the interpretation of early data from the beginning of the pandemic, helping to estimate the impact of non-pharmacological measures in each country, and forecasting the evolution of the pandemic in different potential scenarios. These models use probability distribution curves to describe key dynamic aspects of the transmission, like the probability for every infected person of infecting other individuals, dying or recovering, with parameters obtained from experimental epidemiological data. However, the impact of vaccine-induced immunity, which has been key for controlling the public health emergency caused by the pandemic, has been more challenging to describe in these models, due to the complexity of experimental data. Here we report different probability distribution curves to model the acquisition and decay of immunity after vaccination. We discuss the mathematical background and how these models can be integrated in existing Bayesian probabilistic models to provide a good estimation of the dynamics of COVID-19 transmission during the entire pandemic period.展开更多
Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity f...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-△K relations, the confidence-based da/dN-△K relations, and the probabilistic- and confidence-based da/dN-△K relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic ...The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models(smoothed gridded, linear, and areal sources)based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10%probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.展开更多
Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor ...Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.展开更多
Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified moni...Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified monitoring can help to detect ecological threats and changes earlier, but monitoring resources are limited. Participatory forest monitoring with the help of "citizen scientists" can provide additional resources for forest monitoring and at the same time help to communicate with stakeholders and the general public. Examples for citizen science projects in the forestry domain can be found but a solid, applicable larger framework to utilise public participation in the area of forest monitoring seems to be lacking. We propose that a better understanding of shared and related topics in citizen science and forest monitoring might be a first step towards such a framework. Methods: We conduct a systematic meta-analysis of 1015 publication abstracts addressing "forest monitoring" and "citizen science" in order to explore the combined topical landscape of these subjects. We employ 'topic modelling an unsupervised probabilistic machine learning method, to identify latent shared topics in the analysed publications. Results: We find that large shared topics exist, but that these are primarily topics that would be expected in scientific publications in general. Common domain-specific topics are under-represented and indicate a topical separation of the two document sets on "forest monitoring" and "citizen science" and thus the represented domains. While topic modelling as a method proves to be a scalable and useful analytical tool, we propose that our approach could deliver even more useful data if a larger document set and full-text publications would be available for analysis. Conclusions: We propose that these results, together with the observation of non-shared but related topics, point at under-utilised opportunities for public participation in forest monitoring. Citizen science could be applied as a versatile tool in forest ecosystems monitoring, complementing traditional forest monitoring programmes, assisting early threat recognition and helping to connect forest management with the general public. We conclude that our presented approach should be pursued further as it may aid the understanding and setup of citizen science efforts in the forest monitoring domain.展开更多
A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon pre...A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.展开更多
This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the vi...This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.展开更多
The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called M...The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.展开更多
Probabilistic model checking has been widely applied to quantitative analysis of stochastic systems, e.g., analyzing the performance, reliability and survivability of computer and communication systems. In this paper,...Probabilistic model checking has been widely applied to quantitative analysis of stochastic systems, e.g., analyzing the performance, reliability and survivability of computer and communication systems. In this paper, we extend the application of probabilistic model checking to the vehicle to vehicle(V2V) networks. We first develop a continuous-time Markov chain(CTMC) model for the considered V2V network, after that, the PRISM language is adopted to describe the CTMC model, and continuous-time stochastic logic is used to describe the objective survivability properties. In the analysis, two typical failures are considered, namely the node failure and the link failure, respectively induced by external malicious attacks on a target V2V node, and interrupt in a communication link. Considering these failures, their impacts on the network survivability are demonstrated. It is shown that with increasing failure strength, the network survivability is reduced. On the other hand, the network survivability can be improved with increasing repair rate. The proposed probabilistic model checking-based approach can be effectively used in survivability analysis for the V2V networks, moreover, it is anticipated that the approach can be conveniently extended to other networks.展开更多
A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochast...A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation technique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to verify the applicability of the theoretical prediction of the fatigue crack propagation.展开更多
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce...In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.展开更多
A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low f...A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low forecast skill of rainfall in dynamic models,the time series of regressed YRV summer rainfall are selected as ensemble members in the new scheme,instead of commonly-used YRV summer rainfall simulated by models.Each time series of regressed YRV summer rainfall is derived from a simple linear regression.The predictor in each simple linear regression is the skillfully simulated circulation or surface temperature factor which is highly linear with the observed YRV summer rainfall in the training set.The high correlation between the ensemble mean of these regressed YRV summer rainfall and observation benefit extracting more sample information from the ensemble system.The results show that the cross-validated skill of the new scheme over the period of 1960 to 2002 is much higher than equally-weighted ensemble,multiple linear regression,and Bayesian ensemble with simulated YRV summer rainfall as ensemble members.In addition,the new scheme is also more skillful than reference forecasts (random forecast at a 0.01 significance level for ensemble mean and climatology forecast for probability density function).展开更多
This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goa...This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goal, several computing and statistical tools were used to develop the probabilistic modeling solution based in the methodology of Guo. Solution was implemented using a databases approach and SQL language. A case study is presented which is based on a hypothetical spill in a location inside the Exclusive Economic Zone of Cuba. Important outputs and products of probabilistic modeling were obtained, which are very useful for decision-makers and operators in charge to face oil spill accidents and prepare contingency plans to minimize its effects. In order to study the relationship between the initial trajectory and the arrival of hydrocarbons spills to the coast, a new approach is introduced as an incoming perspective for modeling. It consists in storage in databases the direction of movement of the oil slick at the first 24 hours. The probabilistic modeling solution presented is of great importance for hazard studies of oil spills in Cuban coastal areas.展开更多
A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regulariti...A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.展开更多
State-based models provide an attractive and simple approach to performance modeling. Unfortunately,this approach gives rise to two fundamental problems: 1) capturing the input loads to a system efficiently within suc...State-based models provide an attractive and simple approach to performance modeling. Unfortunately,this approach gives rise to two fundamental problems: 1) capturing the input loads to a system efficiently within such presentations; and 2) coping with the explosion in the number of states whtn system is compositionally presented. Both problems can be regarded as searching for some optimal representative state model with a minimal const. In this paper a probabilistic feedback search approach (popularly referred to as a genetic algorithm) was presented for locating good models with low (state) cost.展开更多
The growth and survival characteristic of Salmonella Enteritidis under acidic and osmotic conditions were studied.Meanwhile,a probabilistic model based on the theory of cell division and mortality was established to p...The growth and survival characteristic of Salmonella Enteritidis under acidic and osmotic conditions were studied.Meanwhile,a probabilistic model based on the theory of cell division and mortality was established to predict the growth or inactivation of S.Enteritidis.The experimental results demonstrated that the growth curves of planktonic and detached cells showed a significant difference(p<0.05)under four conditions,including pH5.0+0.0%NaCl,pH7.0+4.0%NaCl,pH6.0+4.0%NaCl,and pH5.0+4.0%NaCl.And the established primary and secondary models could describe the growth of S.enteritis well by estimating four mathematics evaluation indexes,including determination coefficient(R2),root mean square error(RMSE),accuracy factor(Af)and bias factor(Bf).Moreover,sequential treatment of 15%NaCl stress followed by pH 4.5 stress was the best condition to inactivate S.Enteritidis in 10 h at 25◦C.The probabilistic model with Logistical or Weibullian form could also predict the inactivation of S.Enteritidis well,thus realize the unification of predictive model to some extent or generalization of inactivation model.Furthermore,the primary 4-parameter probabilistic model or generalized inactivation model had slightly higher applicability and reliability to describe the growth or inactivation of S.Enteritidis than Baranyi model or exponential inactivation model within the experimental range in this study.展开更多
Because of the randomness and uncertainty,integration of large-scale wind farms in a power system will exert significant influences on the distribution of power flow.This paper uses polynomial normal transformation me...Because of the randomness and uncertainty,integration of large-scale wind farms in a power system will exert significant influences on the distribution of power flow.This paper uses polynomial normal transformation method to deal with non-normal random variable correlation,and solves probabilistic load flow based on Kriging method.This method is a kind of smallest unbiased variance estimation method which estimates unknown information via employing a point within the confidence scope of weighted linear combination.Compared with traditional approaches which need a greater number of calculation times,long simulation time,and large memory space,Kriging method can rapidly estimate node state variables and branch current power distribution situation.As one of the generator nodes in the western Yunnan power grid,a certain wind farm is chosen for empirical analysis.Results are used to compare with those by Monte Carlo-based accurate solution,which proves the validity and veracity of the model in wind farm power modeling as output of the actual turbine through PSD-BPA.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
文摘The recent outbreak of COVID-19 has caused millions of deaths worldwide and a huge societal and economic impact in virtually all countries. A large variety of mathematical models to describe the dynamics of COVID-19 transmission have been reported. Among them, Bayesian probabilistic models of COVID-19 transmission dynamics have been very efficient in the interpretation of early data from the beginning of the pandemic, helping to estimate the impact of non-pharmacological measures in each country, and forecasting the evolution of the pandemic in different potential scenarios. These models use probability distribution curves to describe key dynamic aspects of the transmission, like the probability for every infected person of infecting other individuals, dying or recovering, with parameters obtained from experimental epidemiological data. However, the impact of vaccine-induced immunity, which has been key for controlling the public health emergency caused by the pandemic, has been more challenging to describe in these models, due to the complexity of experimental data. Here we report different probability distribution curves to model the acquisition and decay of immunity after vaccination. We discuss the mathematical background and how these models can be integrated in existing Bayesian probabilistic models to provide a good estimation of the dynamics of COVID-19 transmission during the entire pandemic period.
基金Project supported by the National Natural Science Foundation of China (Nos.50375130and50323003), the Special Foundation of National Excellent Ph.D.Thesis (No.200234) and thePlanned Itemforthe Outstanding Young Teachers ofMinistry ofEducationofChina (No.2101)
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.
基金国家自然科学基金,Special Foundation of National Excellent Ph.D.Thesis,Outstanding Young Teachers of Ministry of Education of China
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-△K relations, the confidence-based da/dN-△K relations, and the probabilistic- and confidence-based da/dN-△K relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.
基金supported by the grants of the National Nature Science Foundation of China (No. 41761144076, 41490611)the collaborative research program of the Disaster Prevention Research Institute of Kyoto University (No. 29W-03)+2 种基金the COX visiting professor fellowship of the Stanford University to L.B.the Chinese Academy of Sciences (CAS)The World Academy of Sciences (TWAS) President’s Ph D Fellowship to M.M.R
文摘The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models(smoothed gridded, linear, and areal sources)based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10%probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.
文摘Batsmen are the backbone of any cricket team and their selection is very critical to the team’s success.A good batsman not only scores run but also provides stability to the team’s innings.The most important factor in selecting a batsman is their ability to score runs.It is a generally accepted notion that the future performance of a batsman can be predicted by observing and analyzing their past record.This hypothesis is based on the fact that a player’s batting aver-age is generally considered to be a good indicator of their future performance.We proposed a data-driven probabilistic system for batsman performance prediction in the game of cricket.It captures the dependencies between the runs scored by a batsman in consecutive balls.The system is evaluated using a dataset extracted from the Cricinfo website.The system is based on a Hidden Markov model(HMM).HMM is used to generate the prediction model to foresee players’upcoming performances.The first-order Markov chain assumes that the probabil-ity of a batsman scoring runs in the next ball is only dependent on how many runs he scored in the current ball.We use a data-driven approach to learn the para-meters of the HMM from data.A probabilistic matrix is made that predicts what scores the batter can do on the upcoming balls.The results show that the system can accurately predict the runs scored by a batsman in a ball.
文摘Background: With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified monitoring can help to detect ecological threats and changes earlier, but monitoring resources are limited. Participatory forest monitoring with the help of "citizen scientists" can provide additional resources for forest monitoring and at the same time help to communicate with stakeholders and the general public. Examples for citizen science projects in the forestry domain can be found but a solid, applicable larger framework to utilise public participation in the area of forest monitoring seems to be lacking. We propose that a better understanding of shared and related topics in citizen science and forest monitoring might be a first step towards such a framework. Methods: We conduct a systematic meta-analysis of 1015 publication abstracts addressing "forest monitoring" and "citizen science" in order to explore the combined topical landscape of these subjects. We employ 'topic modelling an unsupervised probabilistic machine learning method, to identify latent shared topics in the analysed publications. Results: We find that large shared topics exist, but that these are primarily topics that would be expected in scientific publications in general. Common domain-specific topics are under-represented and indicate a topical separation of the two document sets on "forest monitoring" and "citizen science" and thus the represented domains. While topic modelling as a method proves to be a scalable and useful analytical tool, we propose that our approach could deliver even more useful data if a larger document set and full-text publications would be available for analysis. Conclusions: We propose that these results, together with the observation of non-shared but related topics, point at under-utilised opportunities for public participation in forest monitoring. Citizen science could be applied as a versatile tool in forest ecosystems monitoring, complementing traditional forest monitoring programmes, assisting early threat recognition and helping to connect forest management with the general public. We conclude that our presented approach should be pursued further as it may aid the understanding and setup of citizen science efforts in the forest monitoring domain.
文摘A recent experimental finding replicated an earlier research result, both of which demonstrated conflict with a specific Standard Model prediction. The “Muon g - 2” studies have indicated that the degree of muon precession predicted by the Model is not the same as observed. The researchers offer many posteriori atheoretical hypotheses as possible explanations of their findings, but no fundamental theoretical understanding of the near discovery is among them. This article describes both an explication for the unexpected result and describes its underlying mechanism based on an existing cosmological theory, the Probabilistic Spacetime Theory. The paper also discusses the potential value of this theory.
基金supported by the NSFC(12201557)the Foundation of Zhejiang Provincial Education Department,China(Y202249921).
文摘This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.
基金supported by the National Key Research and Development Program of China(No.2016YFB0800601)the Key Program of NSFC-Tongyong Union Foundation(No.U1636209)+1 种基金the National Natural Science Foundation of China(61602358)the Key Research and Development Programs of Shaanxi(No.2019ZDLGY13-04,No.2019ZDLGY13-07)。
文摘The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.
基金supported by the National Natural Science Foundation of China under Grant no. 61371113 and 61401240Graduate Student Research Innovation Program Foundation of Jiangsu Province no. YKC16006+1 种基金Graduate Student Research Innovation Program Foundation of Nantong University no. KYZZ160354Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B135)
文摘Probabilistic model checking has been widely applied to quantitative analysis of stochastic systems, e.g., analyzing the performance, reliability and survivability of computer and communication systems. In this paper, we extend the application of probabilistic model checking to the vehicle to vehicle(V2V) networks. We first develop a continuous-time Markov chain(CTMC) model for the considered V2V network, after that, the PRISM language is adopted to describe the CTMC model, and continuous-time stochastic logic is used to describe the objective survivability properties. In the analysis, two typical failures are considered, namely the node failure and the link failure, respectively induced by external malicious attacks on a target V2V node, and interrupt in a communication link. Considering these failures, their impacts on the network survivability are demonstrated. It is shown that with increasing failure strength, the network survivability is reduced. On the other hand, the network survivability can be improved with increasing repair rate. The proposed probabilistic model checking-based approach can be effectively used in survivability analysis for the V2V networks, moreover, it is anticipated that the approach can be conveniently extended to other networks.
文摘A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation technique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to verify the applicability of the theoretical prediction of the fatigue crack propagation.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA11Z227)the Natural Science Foundation of Jiangsu Province of China(No. BK2009352)the Fundamental Research Funds for the Central Universities of China (No. 2010B16414)
文摘In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.
基金supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences (CAS) under Grant No.KZCX2-YW-217Doctor Research Startup Project at the Institute of Atmospheric Physics,the CAS under Grant No.7-098300
文摘A Bayesian probabilistic prediction scheme of the Yangtze River Valley (YRV) summer rainfall is proposed to combine forecast information from multi-model ensemble dataset provided by ENSEMBLES project.Due to the low forecast skill of rainfall in dynamic models,the time series of regressed YRV summer rainfall are selected as ensemble members in the new scheme,instead of commonly-used YRV summer rainfall simulated by models.Each time series of regressed YRV summer rainfall is derived from a simple linear regression.The predictor in each simple linear regression is the skillfully simulated circulation or surface temperature factor which is highly linear with the observed YRV summer rainfall in the training set.The high correlation between the ensemble mean of these regressed YRV summer rainfall and observation benefit extracting more sample information from the ensemble system.The results show that the cross-validated skill of the new scheme over the period of 1960 to 2002 is much higher than equally-weighted ensemble,multiple linear regression,and Bayesian ensemble with simulated YRV summer rainfall as ensemble members.In addition,the new scheme is also more skillful than reference forecasts (random forecast at a 0.01 significance level for ensemble mean and climatology forecast for probability density function).
文摘This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goal, several computing and statistical tools were used to develop the probabilistic modeling solution based in the methodology of Guo. Solution was implemented using a databases approach and SQL language. A case study is presented which is based on a hypothetical spill in a location inside the Exclusive Economic Zone of Cuba. Important outputs and products of probabilistic modeling were obtained, which are very useful for decision-makers and operators in charge to face oil spill accidents and prepare contingency plans to minimize its effects. In order to study the relationship between the initial trajectory and the arrival of hydrocarbons spills to the coast, a new approach is introduced as an incoming perspective for modeling. It consists in storage in databases the direction of movement of the oil slick at the first 24 hours. The probabilistic modeling solution presented is of great importance for hazard studies of oil spills in Cuban coastal areas.
文摘A general technique for modeling of the wear of machine parts using the theory of probability and mathematical statistics is developed,which is implemented through the example of plows of agricultural plows.Regularities of their wear during working under mountainous conditions are established,an adequate probabilistic-statistic mathematical model is obtained,general characteristics of the distribution of wear are determined using statistical moments and their most common(modal)values are determined which allow to substantiate the method of restoring worn parts for the purpose of increasing their life.This technique can also be utilized to study the regularity of wear of parts of other machines.
文摘State-based models provide an attractive and simple approach to performance modeling. Unfortunately,this approach gives rise to two fundamental problems: 1) capturing the input loads to a system efficiently within such presentations; and 2) coping with the explosion in the number of states whtn system is compositionally presented. Both problems can be regarded as searching for some optimal representative state model with a minimal const. In this paper a probabilistic feedback search approach (popularly referred to as a genetic algorithm) was presented for locating good models with low (state) cost.
基金This work has been financially supported by the National Natural Science Foundation of China(NSFC 31271896 and 31371776)the project in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(2015BAK36B04)and the project of Science and Technology Commission of Shanghai Municipality(15395810900).
文摘The growth and survival characteristic of Salmonella Enteritidis under acidic and osmotic conditions were studied.Meanwhile,a probabilistic model based on the theory of cell division and mortality was established to predict the growth or inactivation of S.Enteritidis.The experimental results demonstrated that the growth curves of planktonic and detached cells showed a significant difference(p<0.05)under four conditions,including pH5.0+0.0%NaCl,pH7.0+4.0%NaCl,pH6.0+4.0%NaCl,and pH5.0+4.0%NaCl.And the established primary and secondary models could describe the growth of S.enteritis well by estimating four mathematics evaluation indexes,including determination coefficient(R2),root mean square error(RMSE),accuracy factor(Af)and bias factor(Bf).Moreover,sequential treatment of 15%NaCl stress followed by pH 4.5 stress was the best condition to inactivate S.Enteritidis in 10 h at 25◦C.The probabilistic model with Logistical or Weibullian form could also predict the inactivation of S.Enteritidis well,thus realize the unification of predictive model to some extent or generalization of inactivation model.Furthermore,the primary 4-parameter probabilistic model or generalized inactivation model had slightly higher applicability and reliability to describe the growth or inactivation of S.Enteritidis than Baranyi model or exponential inactivation model within the experimental range in this study.
文摘Because of the randomness and uncertainty,integration of large-scale wind farms in a power system will exert significant influences on the distribution of power flow.This paper uses polynomial normal transformation method to deal with non-normal random variable correlation,and solves probabilistic load flow based on Kriging method.This method is a kind of smallest unbiased variance estimation method which estimates unknown information via employing a point within the confidence scope of weighted linear combination.Compared with traditional approaches which need a greater number of calculation times,long simulation time,and large memory space,Kriging method can rapidly estimate node state variables and branch current power distribution situation.As one of the generator nodes in the western Yunnan power grid,a certain wind farm is chosen for empirical analysis.Results are used to compare with those by Monte Carlo-based accurate solution,which proves the validity and veracity of the model in wind farm power modeling as output of the actual turbine through PSD-BPA.