Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the spa...Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the space dimension grows. Here, Markov Graph Model (MGM) is proposed to handle this issue. Specification of the model is described, and several methods for probability computation with MGM are also presented. Based on MGM, algorithms for building user model and predicting user action are presented. And the performance of these algorithms such as computing complexity, prediction accuracy, and storage requirement of MGM are analyzed.展开更多
In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA)...In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.展开更多
This paper discusses an approximate algorithm method which can be used to generate arbitrary non-uniform continuous variates. Percentile calculations of arbitrary continuous distributions are given.In addition, the id...This paper discusses an approximate algorithm method which can be used to generate arbitrary non-uniform continuous variates. Percentile calculations of arbitrary continuous distributions are given.In addition, the idea Of the algorithm is applied to probability computing.展开更多
The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely ...The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely on edge-to-edge transition probabilities to generate next random steps.However,it is prohibitively costly to store all the probabilities for large-scale graphs,and restricting the number of probabilities to consider can negatively impact the accuracy of graph analysis tasks.In this paper,we propose and study an alternative approach,SOOP(second-order random walks with on-demand probability computation),that avoids the space overhead by computing the edge-to-edge transition probabilities on demand during the random walk.However,the same probabilities may be computed multiple times when the same edge appears multiple times in SOW,incurring extra cost for redundant computation and communication.We propose two optimization techniques that reduce the complexity of computing edge-to-edge transition probabilities to generate next random steps,and reduce the cost of communicating out-neighbors for the probability computation,respectively.Our experiments on real-world and synthetic graphs show that SOOP achieves orders of magnitude better performance than baseline precompute solutions,and it can efficiently computes SOW algorithms on billion-scale graphs.展开更多
文摘Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the space dimension grows. Here, Markov Graph Model (MGM) is proposed to handle this issue. Specification of the model is described, and several methods for probability computation with MGM are also presented. Based on MGM, algorithms for building user model and predicting user action are presented. And the performance of these algorithms such as computing complexity, prediction accuracy, and storage requirement of MGM are analyzed.
基金supported in part by Thailand Science Research and Innovation(TSRI)and National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)Thailand+1 种基金by Khon Kaen University,ThailandDuy Tan University,Vietnam。
文摘In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.
文摘This paper discusses an approximate algorithm method which can be used to generate arbitrary non-uniform continuous variates. Percentile calculations of arbitrary continuous distributions are given.In addition, the idea Of the algorithm is applied to probability computing.
文摘The second-order random walk has recently been shown to effectively improve the accuracy in graph analysis tasks.Existing work mainly focuses on centralized second-order random walk(SOW)algorithms.SOW algorithms rely on edge-to-edge transition probabilities to generate next random steps.However,it is prohibitively costly to store all the probabilities for large-scale graphs,and restricting the number of probabilities to consider can negatively impact the accuracy of graph analysis tasks.In this paper,we propose and study an alternative approach,SOOP(second-order random walks with on-demand probability computation),that avoids the space overhead by computing the edge-to-edge transition probabilities on demand during the random walk.However,the same probabilities may be computed multiple times when the same edge appears multiple times in SOW,incurring extra cost for redundant computation and communication.We propose two optimization techniques that reduce the complexity of computing edge-to-edge transition probabilities to generate next random steps,and reduce the cost of communicating out-neighbors for the probability computation,respectively.Our experiments on real-world and synthetic graphs show that SOOP achieves orders of magnitude better performance than baseline precompute solutions,and it can efficiently computes SOW algorithms on billion-scale graphs.