Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the...Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.展开更多
This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr...A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existi...The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a G...The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.展开更多
以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征...以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。展开更多
为评估柱式隔离开关在台风过程中的结构失效风险,考虑了风场和材料抗力的随机性,建立了隔离开关结构随机可靠性高效求解模型。首先,基于功率谱密度模型,考虑了地面粗糙度、平均风速和分界波数的随机性,给出了台风的随机场模型;其次,利用...为评估柱式隔离开关在台风过程中的结构失效风险,考虑了风场和材料抗力的随机性,建立了隔离开关结构随机可靠性高效求解模型。首先,基于功率谱密度模型,考虑了地面粗糙度、平均风速和分界波数的随机性,给出了台风的随机场模型;其次,利用Abaqus有限元分析软件,建立了隔离开关结构的三维结构力学分析模型。同时,基于概率密度演化(Probability Density Evolution Model,PDEM)理论,给出了结构目标变量的概率密度函数计算方法;最后,采用Matlab-Abaqus进行联合模拟分析计算,实现了隔离开关结构可靠性的高效求解。结果表明,隔离开关绝缘支柱底部的极限应力为结构控制参数,风场和材料抗力的随机性对结构易损性曲线影响显著,设计过程中应控制材料抗力层次的随机性。展开更多
提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基...提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。展开更多
基金supported by the National Natural Science Foundation of China(No.51390493)
文摘Turbulent gas-particle flows are studied by a kinetic description using a prob- ability density function (PDF). Unlike other investigators deriving the particle Reynolds stress equations using the PDF equations, the particle PDF transport equations are di- rectly solved either using a finite-difference method for two-dimensional (2D) problems or using a Monte-Carlo (MC) method for three-dimensional (3D) problems. The proposed differential stress model together with the PDF (DSM-PDF) is used to simulate turbulent swirling gas-particle flows. The simulation results are compared with the experimental results and the second-order moment (SOM) two-phase modeling results. All of these simulation results are in agreement with the experimental results, implying that the PDF approach validates the SOM two-phase turbulence modeling. The PDF model with the SOM-MC method is used to simulate evaporating gas-droplet flows, and the simulation results are in good agreement with the experimental results.
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
基金National Natural Science Foundation of China(No.61374044)Shanghai Municipal Science and Technology Commission,China(No.15510722100)+2 种基金Shanghai Municipal Education Commission,China(No.14ZZ088)Shanghai Talent Development Plan,ChinaShanghai Baoshan Science and Technology Commission,China(No.bkw2013120)
文摘A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金Supported by the National Key Fundamental Research & Development Program of China (2007CB11006)the Zhejiang Natural Science Foundation (R106745, Y1080422)
文摘The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the es- timates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) ap- proaches are used for the FMM parameter estimation.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
基金the support by the National Natural Science Foundation of China(Nos.51709247 and 51490675)the National Key R&D Program of China(No.2016YFE0200100)
文摘The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.
文摘以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。
文摘目的为提升人体工学椅的群体用户体验水平,从用户需求出发,研究产品的群体用户体验设计策略。方法首先,从白领人群对产品的行为特征、操作习惯和情感变化出发,结合唐·诺曼(Don Norman)提出的三层次理论,从欲望层次、行为层次和反应层次确定群体用户体验的关键评价指标,其次,应用提出的“概率密度有序加权”(Probability Density Ordered Weighting,PDOW)方法构建产品用户群体体验综合评价模型,克服用户体验测试的不确定性,并探寻用户群体评价结果与评价指标的联系。最后,设计白领人群人体工学椅产品用户体验实验,确定人体工学椅最佳方案。结果建模结果表明,应用综合评价模型,能够很好地反映出白领人群对人体工学椅外观、交互和情感的偏好,设计出用户体验更好的产品。结论“概率密度有序加权”方法可有效消除测试的不确定性,准确得出用户群体对产品的综合评价结果,其低成本、便捷高效的特性有助于产品设计过程中更好地了解用户群体的偏好,给产品设计中用户群体体验优化提供了新的解决思路。
文摘为评估柱式隔离开关在台风过程中的结构失效风险,考虑了风场和材料抗力的随机性,建立了隔离开关结构随机可靠性高效求解模型。首先,基于功率谱密度模型,考虑了地面粗糙度、平均风速和分界波数的随机性,给出了台风的随机场模型;其次,利用Abaqus有限元分析软件,建立了隔离开关结构的三维结构力学分析模型。同时,基于概率密度演化(Probability Density Evolution Model,PDEM)理论,给出了结构目标变量的概率密度函数计算方法;最后,采用Matlab-Abaqus进行联合模拟分析计算,实现了隔离开关结构可靠性的高效求解。结果表明,隔离开关绝缘支柱底部的极限应力为结构控制参数,风场和材料抗力的随机性对结构易损性曲线影响显著,设计过程中应控制材料抗力层次的随机性。
文摘提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。