There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a n...There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a new probability of detection model is proposed for the updating of crack size distribution. Furthermore, the theoretical derivation shows that most existing probability of detection models are special cases of the new probability of detection model. The least square method is adopted for determining the values of parameters in the new POD model. This new model is also compared with other existing probability of detection models. The results indicate that the new probability of detection model can fit the inspection data better. This new probability of detection model is then applied to the analysis of the problem of crack size updating for offshore structures. The Bayesian updating method is used to analyze the effect of probability of detection models on the posterior distribution of a crack size. The results show that different probabilities of detection models generate different posterior distributions of a crack size for offshore structures.展开更多
Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellat...Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.展开更多
To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly...To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly existing in offshore structures. The fuzzy-set theory is applied to estimate human errors through the definition of inspection quality. Expressions of inspection quality are achieved. To verify the validity and correctness of the expressions, the data from an offshore platform field inspection of evaluation results of human errors affecting inspection quality are used to estimate the parameters of the POD. The results show that the present models can provide basis for further study of ofTshore structural inspection reliability.展开更多
The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon si...The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a...A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a lack of interference with licensed primary users(PUs).This utilization of CR networks in the spectrum sensing causes vulnerable attacks like primary user emulation(PUE)attack and here PUs play the role of malicious user and do not permit other users to utilize PUs channel even in their unavailability.On the basis of the traditional single-threshold energy detection algorithm,a novel modified double-threshold energy detector is formulated in the CR network and the detection probability,miss detection probability,probability of false alarm,and their inter-relationship are analyzed.This paper develops a modified double threshold energy detection cooperative spectrum sensing technique to alleviate the PUE attack.Finally,performance-based evaluation is carried out between the proposed and the existing energy detection spectrum sensing method that had no consideration on PUE attack.The resultant of the simulation in MATLAB has revealed that the proposed model has significantly mitigated PUE attack by means of providing outstanding performance.展开更多
The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypot...The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.展开更多
As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key a...As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key anti submarine tool. In order to improve operational efficiency, a deep study was made of the target detection probabilities for aerial torpedoes released by anti-submarine patrol aircraft. The operational modes of aerial torpedoes were analyzed and mathematical-simulation models were then established. The detection probabilities of three attacking modes were then calculated. Measures were developed for improving low probabilities of detection when attacking a probable target position. This study provides an important frame of reference for the operation of aerial torpedo released by anti-submarine patrol aircraft.展开更多
Due to the fact that the conventional spectrum sensing algorithm is susceptible to noise, an adaptive double-threshold energy detection algorithm for a cognitive radio is proposed. Based on double-threshold energy det...Due to the fact that the conventional spectrum sensing algorithm is susceptible to noise, an adaptive double-threshold energy detection algorithm for a cognitive radio is proposed. Based on double-threshold energy detection, the algorithm can adaptively switch between one-round sensing and two-round sensing by comparing the observations with the pre-fixed thresholds. Mathematical expressions for the probability of detection, the probability of false alarm, and the sensing time are derived. The relationships including signal to noise ratio (SNR) vs. the probability of detection and SNR vs. the sensing time are plotted using Monte Carlo simulation and the algorithm is verified in a real cognitive system based on GNU Radio and universal software radio peripheral (USRP). Simulation and experimental results show that, compared with the existing spectrum sensing method, the proposed algorithm can achieve a higher probability of detection within a reasonable sensing time.展开更多
Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Perfo...Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.展开更多
Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for colla...Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.展开更多
For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosi...For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.展开更多
Weighted one bit hard combination for cooperative spectrum sensing is proposed in this paper. Two thresholds are adopted to divide the possible energy value into three weighted regions. If the energy value falls into ...Weighted one bit hard combination for cooperative spectrum sensing is proposed in this paper. Two thresholds are adopted to divide the possible energy value into three weighted regions. If the energy value falls into the corresponding region,it will be judged as "1",no information or "0". When the probability of false alarm is constrained to be constant,the objective is to maximize the probability of detection. The optimization problem is simplified by separating the weight of the middle region into several intervals. Simulation results show that the sensing performance of the proposed scheme is much better than that of the traditional one bit hard combination scheme and almost the same as that of the equal gain combination(EGC) scheme. Moreover,compared with the traditional one bit hard combination,fewer average sensing bits are required to transmit to the data fusion center with the proposed method.展开更多
The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm na...The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.展开更多
This paper presents a novel approach of M-ary baseband pulse amplitude modulated signal processing via a parameter-optimized nonlinear dynamic system. This nonlinear system usually shows the phenomenon of stochastic r...This paper presents a novel approach of M-ary baseband pulse amplitude modulated signal processing via a parameter-optimized nonlinear dynamic system. This nonlinear system usually shows the phenomenon of stochastic resonance by adding noise. To thoroughly discuss the signal processing performance of the nonlinear system, we tune the system parameters to obtain a nonlinear detector with optimal performance. For characterizing the output of the nonlinear system, the derivation of the probability of detection error is given by the system response speed and the probability density function of the nonlinear system output. By varying the noise intensity with fixed system parameters, the phenomenon of stochastic resonance is shown and by tuning the system parameters with fixed noise, the probability of detection error is minimized and the nonlinear system is optimized. The detection performance of the two cases is compared with the theoretical probability of detection error, which is validated by numerical simulation.展开更多
Regional Weather Forecasting Centre(RWFC)New Delhi has the responsibility to issue and disseminate rainfall forecast for Delhi.So it is very important to scientifically verify the rainfall forecast issued by RWFC.In t...Regional Weather Forecasting Centre(RWFC)New Delhi has the responsibility to issue and disseminate rainfall forecast for Delhi.So it is very important to scientifically verify the rainfall forecast issued by RWFC.In this study rainfall forecast verification of Delhi has been carried out annually and season wise for the period 2011 to 2021.Various statistical parameters such as Percentage Correct(PC),Probability of Detection(POD),Missing Ratio(MR),False Alarm Ratio(FAR),Critical Success Index(CSI),True Skill Statistics(TSS)and Heidke Skill Score(HSS)have been calculated for season wise and annually.A forecast is considered to be improved if PC,POD,CSI,TSS and HSS increase and FAR and MR decrease over a period of time.The author can conclude that annual accuracy of forecast has increased significantly over the period of time from 2011 to 2021,as PC,POD,CSI,TSS and HSS increase and FAR and MR decrease over a period of time.Maximum contribution in the improved forecast has observed in transition season(pre-monsoon season followed by post-monsoon,having rainfall activity mainly in association with thunderstorms),when FAR and MR have decreased drastically.展开更多
A probability-based damage tolerance methodology has been proposed to improve the recognition of material anomalies, especially hard alpha(TiN) anomalies for aeroengine rotor disks. A key input to this method is hard ...A probability-based damage tolerance methodology has been proposed to improve the recognition of material anomalies, especially hard alpha(TiN) anomalies for aeroengine rotor disks. A key input to this method is hard alpha anomaly distribution, which reflects the occurrence rate and size of anomalies present in the finished part material of titanium rotors. Since anomalies rarely occur naturally, an experimental method is proposed to obtain the anomaly distribution for titanium alloy aeroengine disks to reflect and equivalently replace the manufacturing development in titanium industry. In general, the anomaly distribution information can be divided into two parts: the Probability of Detection(POD) curve and the detected anomaly distribution, which contains the size and frequency data of the detected anomalies. The distribution can be established based on several appropriate assumptions and derivation steps with different confidence levels of POD curves and detected anomaly distributions. In this case, the distribution can be obtained in a relatively short time as a key input to the probability-based damage tolerance methodology. Then the Probability of Failure(POF) can be calculated, and the value is found to vary with different confidence levels. On this basis, the conservative estimated POF can be obtained in conjunction with confidence levels.展开更多
文摘There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a new probability of detection model is proposed for the updating of crack size distribution. Furthermore, the theoretical derivation shows that most existing probability of detection models are special cases of the new probability of detection model. The least square method is adopted for determining the values of parameters in the new POD model. This new model is also compared with other existing probability of detection models. The results indicate that the new probability of detection model can fit the inspection data better. This new probability of detection model is then applied to the analysis of the problem of crack size updating for offshore structures. The Bayesian updating method is used to analyze the effect of probability of detection models on the posterior distribution of a crack size. The results show that different probabilities of detection models generate different posterior distributions of a crack size for offshore structures.
文摘Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.
文摘To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly existing in offshore structures. The fuzzy-set theory is applied to estimate human errors through the definition of inspection quality. Expressions of inspection quality are achieved. To verify the validity and correctness of the expressions, the data from an offshore platform field inspection of evaluation results of human errors affecting inspection quality are used to estimate the parameters of the POD. The results show that the present models can provide basis for further study of ofTshore structural inspection reliability.
基金supported by the Key Research and Development Project of Zhejiang Province(Grant No.2023C01248,2023C01069)and the National Natural Science Foundation of China(Grant No.52375135,52305137).
文摘The reliability of the eddy current testing (ECT) in flaw detection is quantitatively evaluated by theprobability of detection (POD). Precise and efficient modeling of POD gives direction for the implement of ECTon sites to avoid false or missing flaw detection. Traditional POD analysis focuses on single uncertain factor orsingle response signal with limited credibility in engineering. This paper considers multiple response signals andmultiple flaw parameters to perform POD. The flaw length, the flaw depth, the coil impedance, and the magneticflux density are comprehensively studied under various lift-off distances. A finite element model (FEM) of ECT isestablished and verified with experiments to obtain sufficient simulation data for discrete POD modeling. Thecontinuous POD function is then fitted based on the discrete values to show the superiority of integrating multiplefactors. A comparison with conventional POD analysis further demonstrates the higher reliability of ECT flawdetection considering multiple flaw parameters and multiple response signals, especially for small flaws.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
文摘A most promising solution to the expansion of spectrum efficiency is cognitive radio(CR)and this expansion is achieved by permitting the licensed frequency bands to be accessed by unlicensed secondary users(SUs)with a lack of interference with licensed primary users(PUs).This utilization of CR networks in the spectrum sensing causes vulnerable attacks like primary user emulation(PUE)attack and here PUs play the role of malicious user and do not permit other users to utilize PUs channel even in their unavailability.On the basis of the traditional single-threshold energy detection algorithm,a novel modified double-threshold energy detector is formulated in the CR network and the detection probability,miss detection probability,probability of false alarm,and their inter-relationship are analyzed.This paper develops a modified double threshold energy detection cooperative spectrum sensing technique to alleviate the PUE attack.Finally,performance-based evaluation is carried out between the proposed and the existing energy detection spectrum sensing method that had no consideration on PUE attack.The resultant of the simulation in MATLAB has revealed that the proposed model has significantly mitigated PUE attack by means of providing outstanding performance.
基金Sponsored by the National Natural Science Foundation of China(60232010)
文摘The performance of a distributed Neyman-Pearson detection system is considered with the decision rules of the sensors given and the decisions from different sensors being mutually independent conditioned on both hypothese. To achieve the better performance at the fusion center for a general detection system of n 〉 3 sensor configuration, the necessary and sufficient conditions are derived by comparing the probability of detec- tion at the fusion center with that of each of the sensors, with the constraint that the probability of false alarm at the fusion center is equal to that of the sensor. The conditions are related with the performances of the sensors and using the results we can predict the performance at the fusion center of a distributed detection system and can choose appropriate sensors to construct efficient distributed detection systems.
文摘As a result of the high speed of anti-submarine patrol aircraft as well as their wide range, high efficiency and other characteristics, aerial torpedoes released by anti-submarine patrol aircraft have become the key anti submarine tool. In order to improve operational efficiency, a deep study was made of the target detection probabilities for aerial torpedoes released by anti-submarine patrol aircraft. The operational modes of aerial torpedoes were analyzed and mathematical-simulation models were then established. The detection probabilities of three attacking modes were then calculated. Measures were developed for improving low probabilities of detection when attacking a probable target position. This study provides an important frame of reference for the operation of aerial torpedo released by anti-submarine patrol aircraft.
基金The National Science and Technology Major Project (No. 2010ZX03006-002-01)the National Natural Science Foundation of China(No. 60972026 )the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708046)
文摘Due to the fact that the conventional spectrum sensing algorithm is susceptible to noise, an adaptive double-threshold energy detection algorithm for a cognitive radio is proposed. Based on double-threshold energy detection, the algorithm can adaptively switch between one-round sensing and two-round sensing by comparing the observations with the pre-fixed thresholds. Mathematical expressions for the probability of detection, the probability of false alarm, and the sensing time are derived. The relationships including signal to noise ratio (SNR) vs. the probability of detection and SNR vs. the sensing time are plotted using Monte Carlo simulation and the algorithm is verified in a real cognitive system based on GNU Radio and universal software radio peripheral (USRP). Simulation and experimental results show that, compared with the existing spectrum sensing method, the proposed algorithm can achieve a higher probability of detection within a reasonable sensing time.
文摘Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The detection performance of the periodogram and its variants methods is evaluated. The variants methods Performance evaluation through the Receiver Operating Characteristics (ROCs) are presented and compared from the viewpoint of probability of detection (Pd), probability of false alarm (Pfa) by computer simulation. When the sinusoid frequency does not correspond to one of the spectral bins (mid-bin frequency situation), the performance of all the mentioned detectors degrades. This research investigates the development of a bearing estimation method using Fast Orthogonal Search (FOS) to enhance spectral estimation which, improves both target detection and bearing estimation in case of low SNR inputs.
文摘Collaboration in wireless sensor systems must be fault-tolerant due to the harsh environmental conditions at which such systems can be deployed. This paper focuses on finding the signal processing algorithms for collaborative target detection based on the generalized approach to signal processing (GASP) in the presence of noise. The signal processing algorithms are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor systems. Two types of generalized signal processing algorithms, namely, value fusion and decision fusion constructed according to GASP in the presence of noise, are identified first. When comparing their performance and communication overhead, the decision fusion algorithm is found to become superior to the value fusion algorithm as the ratio of faulty sensors to fault free sensors increases. The use of GASP under designing the value and decision fusion algorithms in wireless sensor systems allows us to obtain the same performance, but at low values of signal energy, as well as under employment of the universally adopted signal processing algorithms widely used in practice.
基金supported by the National Natural Science Foundation of China(61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JQ8040)+1 种基金the Fundamental Research Funds for the Central Universities(K5051302015K5051302040)
文摘For global navigation satellite system (GNSS) signals in Gaussian and Rayleigh fading channel, a novel signal detection algorithm is proposed. Under the low frequency uncertainty case, after performing discrete cosine transform (DCT) to the outputs of the partial matched filter (PMF) for every antenna, the high order com- ponents in the transforming domain will be filtered, then the equalgain (EG) combination for the inverse discrete cosine transform (IDCT) reconstructed signal would be done subsequently. Thus, due to the different frequency distribution characteristics between the noise and signals, after EG combination, the energy of signals has almost no loss and the noise energy is greatly reduced. The theoretical analysis and simulation results show that the detection algorithm can effectively improve the signal-to-noise ratio of the captured signal and increase the probability of detection under the same false alarm probability. In addition, it should be pointed out that this method can also be applied to Rayleigh fading channels with moving antenna.
基金supported in part by the Hi-tech research and development program of China (2009AA011805)National Natural Science Foundation of China (61032002)+1 种基金the Important National Science and Technology Specifi c Projects of China (2009ZX03003-007)the Joint State Key Program of the National Natural Science Foundation of China and the National Railway Ministry of China (60830001)
文摘Weighted one bit hard combination for cooperative spectrum sensing is proposed in this paper. Two thresholds are adopted to divide the possible energy value into three weighted regions. If the energy value falls into the corresponding region,it will be judged as "1",no information or "0". When the probability of false alarm is constrained to be constant,the objective is to maximize the probability of detection. The optimization problem is simplified by separating the weight of the middle region into several intervals. Simulation results show that the sensing performance of the proposed scheme is much better than that of the traditional one bit hard combination scheme and almost the same as that of the equal gain combination(EGC) scheme. Moreover,compared with the traditional one bit hard combination,fewer average sensing bits are required to transmit to the data fusion center with the proposed method.
基金This project was supported by the National Natural Science Foundation of China (60232010).
文摘The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and self-masking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No 60702022)
文摘This paper presents a novel approach of M-ary baseband pulse amplitude modulated signal processing via a parameter-optimized nonlinear dynamic system. This nonlinear system usually shows the phenomenon of stochastic resonance by adding noise. To thoroughly discuss the signal processing performance of the nonlinear system, we tune the system parameters to obtain a nonlinear detector with optimal performance. For characterizing the output of the nonlinear system, the derivation of the probability of detection error is given by the system response speed and the probability density function of the nonlinear system output. By varying the noise intensity with fixed system parameters, the phenomenon of stochastic resonance is shown and by tuning the system parameters with fixed noise, the probability of detection error is minimized and the nonlinear system is optimized. The detection performance of the two cases is compared with the theoretical probability of detection error, which is validated by numerical simulation.
文摘Regional Weather Forecasting Centre(RWFC)New Delhi has the responsibility to issue and disseminate rainfall forecast for Delhi.So it is very important to scientifically verify the rainfall forecast issued by RWFC.In this study rainfall forecast verification of Delhi has been carried out annually and season wise for the period 2011 to 2021.Various statistical parameters such as Percentage Correct(PC),Probability of Detection(POD),Missing Ratio(MR),False Alarm Ratio(FAR),Critical Success Index(CSI),True Skill Statistics(TSS)and Heidke Skill Score(HSS)have been calculated for season wise and annually.A forecast is considered to be improved if PC,POD,CSI,TSS and HSS increase and FAR and MR decrease over a period of time.The author can conclude that annual accuracy of forecast has increased significantly over the period of time from 2011 to 2021,as PC,POD,CSI,TSS and HSS increase and FAR and MR decrease over a period of time.Maximum contribution in the improved forecast has observed in transition season(pre-monsoon season followed by post-monsoon,having rainfall activity mainly in association with thunderstorms),when FAR and MR have decreased drastically.
基金funded by the National Natural Science Foundation of China and Civil Aviation Administration of China(No.U1833109)the Innovation Team of Complex System Safety and Airworthiness of Aero Engine from the Co-Innovation Center for Advanced Aeroengine of China。
文摘A probability-based damage tolerance methodology has been proposed to improve the recognition of material anomalies, especially hard alpha(TiN) anomalies for aeroengine rotor disks. A key input to this method is hard alpha anomaly distribution, which reflects the occurrence rate and size of anomalies present in the finished part material of titanium rotors. Since anomalies rarely occur naturally, an experimental method is proposed to obtain the anomaly distribution for titanium alloy aeroengine disks to reflect and equivalently replace the manufacturing development in titanium industry. In general, the anomaly distribution information can be divided into two parts: the Probability of Detection(POD) curve and the detected anomaly distribution, which contains the size and frequency data of the detected anomalies. The distribution can be established based on several appropriate assumptions and derivation steps with different confidence levels of POD curves and detected anomaly distributions. In this case, the distribution can be obtained in a relatively short time as a key input to the probability-based damage tolerance methodology. Then the Probability of Failure(POF) can be calculated, and the value is found to vary with different confidence levels. On this basis, the conservative estimated POF can be obtained in conjunction with confidence levels.