In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were s...In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.展开更多
In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding ...In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding relay, which can assist a distant user in offloading tasks to the intelligent MEC server. Then, the closed-form expressions of offloading outage probability for a pair of users are derived in detail to evaluate the performance of the cooperative NOMA-MEC system. Furthermore, the approximate expressions of offloading outage probability are provided in the high signal-to-noise ratio region. Based on the asymptotic analyses, the diversity order of distant user and nearby user is n+m+1 and n+1, respectively. The system throughput and energy efficiency of cooperative NOMA-MEC are analyzed in delay-limited transmission mode. Numerical results show that 1) Cooperative NOMA-MEC is better than orthogonal multiple access(OMA) in terms of offload performance;2) The offload performance of cooperative NOMA-MEC system improves as the number of transmission task decreases;and 3) Cooperative NOMA-MEC performs better than OMA in energy efficiency.展开更多
In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA)...In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.展开更多
In the ring-shaped Su–Schrieffer–Heeger(SSH)double-chain,the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport...In the ring-shaped Su–Schrieffer–Heeger(SSH)double-chain,the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport properties of non-trivial topological edge states.Here,we have studied the electron transport signatures of non-trivial topological edge states in a ring-shaped SSH double-chain system based on the wave-guide theory and transfer-matrix method.In the ringshaped SSH double-chain with the upper chain being different from the lower one,it is demonstrated that the electron transmission probability displays the four and two resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes,respectively.Whereas in the case of the upper chain being the same as the lower one,the two transmission resonance peaks associated with the non-trivial topological edge states in the weak coupling regime are only found,and that in the strong coupling regime disappear that originated from the destructive interference between the two different electron tunneling paths of the upper and lower chains.Consequently,the variation of the number of transmission resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes suggests that an alternative scheme for detecting non-trivial topological edge states in the ring-shaped SSH doublechain system.展开更多
In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution P...In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.展开更多
为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度...为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现.展开更多
To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence...To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%.展开更多
文摘In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace.
基金supported in part by the Natural Science Foundation of Beijing Municipality under Grant 4204099,Grant 19L2022,Grant L182032,Grant L182039 and Grant KZ201911232046the Science and Technology Project of Beijing Municipal Education Commission under Grant KM202011232002 and Grant KM202011232003。
文摘In this manuscript, a cooperative non-orthogonal multiple access based intelligent mobile edge computing(NOMA-MEC) communication system is constructed in detail. The nearby user is viewed as a decoding and forwarding relay, which can assist a distant user in offloading tasks to the intelligent MEC server. Then, the closed-form expressions of offloading outage probability for a pair of users are derived in detail to evaluate the performance of the cooperative NOMA-MEC system. Furthermore, the approximate expressions of offloading outage probability are provided in the high signal-to-noise ratio region. Based on the asymptotic analyses, the diversity order of distant user and nearby user is n+m+1 and n+1, respectively. The system throughput and energy efficiency of cooperative NOMA-MEC are analyzed in delay-limited transmission mode. Numerical results show that 1) Cooperative NOMA-MEC is better than orthogonal multiple access(OMA) in terms of offload performance;2) The offload performance of cooperative NOMA-MEC system improves as the number of transmission task decreases;and 3) Cooperative NOMA-MEC performs better than OMA in energy efficiency.
基金supported in part by Thailand Science Research and Innovation(TSRI)and National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)Thailand+1 种基金by Khon Kaen University,ThailandDuy Tan University,Vietnam。
文摘In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.
基金supported by the National Natural Science Foundation of China(Grant No.11974153)the Natural Science Foundation of Shanxi Province,China(Grant No.20210302123184)+1 种基金the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province,China(Grant No.163220120-S)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020MA091)。
文摘In the ring-shaped Su–Schrieffer–Heeger(SSH)double-chain,the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport properties of non-trivial topological edge states.Here,we have studied the electron transport signatures of non-trivial topological edge states in a ring-shaped SSH double-chain system based on the wave-guide theory and transfer-matrix method.In the ringshaped SSH double-chain with the upper chain being different from the lower one,it is demonstrated that the electron transmission probability displays the four and two resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes,respectively.Whereas in the case of the upper chain being the same as the lower one,the two transmission resonance peaks associated with the non-trivial topological edge states in the weak coupling regime are only found,and that in the strong coupling regime disappear that originated from the destructive interference between the two different electron tunneling paths of the upper and lower chains.Consequently,the variation of the number of transmission resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes suggests that an alternative scheme for detecting non-trivial topological edge states in the ring-shaped SSH doublechain system.
基金supported by the National Natural Science Foundation of China(No.52004120).
文摘In a smart system, the faults of edge devices directly impact the system’s overall fault. Further, complexity arises when different edge devices provide varying fault data. To study the Smart System Fault Evolution Process (SSFEP) under different fault data conditions, an intelligent method for determining the Smart System Fault Probability (SSFP) is proposed. The data types provided by edge devices include the following: (1) only known edge device fault probability;(2) known Edge Device Fault Probability Distribution (EDFPD);(3) known edge device fault number and EDFPD;(4) known factor state of the edge device fault and EDFPD. Moreover, decision methods are proposed for each data case. Transfer Probability (TP) is divided into Continuity Transfer Probability (CTP) and Filterability Transfer Probability (FTP). CTP asserts that a Cause Event (CE) must lead to a Result Event (RE), while FTP requires CF probability to exceed a threshold before RF occurs. These probabilities are used to calculate SSFP. This paper introduces a decision method using the information diffusion principle for low-data SSFP determination, along with an improved method. The method is based on space fault network theory, abstracting SSFEP into a System Fault Evolution Process (SFEP) for research purposes.
文摘为了更好地支持边缘计算服务提供商进行资源的提前配置与合理分配,负载预测被认为是边缘计算中的一项重要的技术支撑.传统的负载预测方法在面对具有明显趋势或规律性的负载时能取得良好的预测效果,但是它们无法有效地对边缘环境中高度变化的负载取得精确的预测.此外,这些方法通常将预测模型拟合到独立的时间序列上,进而进行单点负载实值预测.但是在实际边缘计算场景中,得到未来负载变化的概率分布情况会比直接预测未来负载的实值更具应用价值.为了解决上述问题,本文提出了一种基于深度自回归循环神经网络的边缘负载预测方法(Edge Load Prediction with Deep Auto-regressive Recurrent networks,ELP-DAR).所提出的ELP-DAR方法利用边缘负载时序数据训练深度自回归循环神经网络,将LSTM集成至S2S框架中,进而直接预测下一时间点负载概率分布的所有参数.因此,ELP-DAR方法能够高效地提取边缘负载的重要表征,学习复杂的边缘负载模式进而实现对高度变化的边缘负载精确的概率分布预测.基于真实的边缘负载数据集,通过大量仿真实验对所提出ELP-DAR方法的有效性进行了验证与分析.实验结果表明,相比于其他基准方法,所提出的ELP-DAR方法可以取得更高的预测精度,并且在不同预测长度下均展现出了优越的性能表现.
基金supported in part by the National Key R&D Program of China No.2020YFB1806905the National Natural Science Foundation of China No.62201079+1 种基金the Beijing Natural Science Foundation No.L232051the Major Key Project of Peng Cheng Laboratory(PCL)Department of Broadband Communication。
文摘To facilitate emerging applications and demands of edge intelligence(EI)-empowered 6G networks,model-driven semantic communications have been proposed to reduce transmission volume by deploying artificial intelligence(AI)models that provide abilities of semantic extraction and recovery.Nevertheless,it is not feasible to preload all AI models on resource-constrained terminals.Thus,in-time model transmission becomes a crucial problem.This paper proposes an intellicise model transmission architecture to guarantee the reliable transmission of models for semantic communication.The mathematical relationship between model size and performance is formulated by employing a recognition error function supported with experimental data.We consider the characteristics of wireless channels and derive the closed-form expression of model transmission outage probability(MTOP)over the Rayleigh channel.Besides,we define the effective model accuracy(EMA)to evaluate the model transmission performance of both communication and intelligence.Then we propose a joint model selection and resource allocation(JMSRA)algorithm to maximize the average EMA of all users.Simulation results demonstrate that the average EMA of the JMSRA algorithm outperforms baseline algorithms by about 22%.