Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Objective To analyze the global epidemic status of the Ebola virus disease(EVD) and assess the importation risk into China.Methods Data from World Health Organization reports were used. We described the global epidemi...Objective To analyze the global epidemic status of the Ebola virus disease(EVD) and assess the importation risk into China.Methods Data from World Health Organization reports were used. We described the global epidemic status of EVD from 1976–2021, and assessed and ranked the importation risk of EVD from the diseaseoutbreaking countries into China using the risk matrix and Borda count methods, respectively.Results From 1976–2021, EVD mainly occurred in western and central Africa, with the highest cumulative number of cases(14,124 cases) in Sierra Leone, and the highest cumulative fatality rate(85%) in the Congo. Outbreaks of EVD have occurred in the Democratic Republic of the Congo and Guinea since 2018. The importation risk into China varies across countries with outbreaks of disease.The Democratic Republic of the Congo had an extremely high risk(23 Borda points), followed by Guinea and Liberia. Countries with a moderate importation risk were Nigeria, Uganda, Congo, Sierra Leone,Mali, and Gabon, while countries with a low importation risk included Sudan, Senegal, and Co te d’Ivoire.Conclusion China is under the risk of EVD importation with the globalization and severe epidemic status of EVD. Key attention need to be paid to the Democratic Republic of the Congo, Guinea, and Liberia. Therefore, it is necessary to prevent and prepare in advance for importation risk in China.展开更多
The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms cond...The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyc...Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.展开更多
In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and giv...In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.展开更多
The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The r...The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.展开更多
The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the con...The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode...High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode assembly. The effects of carbon and ionomer contents on the electrode micro-structure and fuel cell performance are investigated by physical characterization and single cell testing. The Pt nanowires are gradient distributed across the cathode thickness, and more Pt exists near the membrane. Both the carbon and ionomer contents can affect the Pt nanowires distribution and aggregation. In addition, the carbon loading dominates the transport distance of gas and proton, and the ionomer content affects the triple phase boundaries and porosity in the cathode. The optimal structure of Pt nanowire cathode is obtained at 0.10 mg·cm^-2 carbon loading and 10 wt% ionomer.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement...SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine t...The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.展开更多
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad...In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.展开更多
To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and...To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.展开更多
A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo...A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.展开更多
The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identica...The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.展开更多
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
基金funded by the National Natural Science Foundation of China[Grant No.71934002,Grant No.72122001]。
文摘Objective To analyze the global epidemic status of the Ebola virus disease(EVD) and assess the importation risk into China.Methods Data from World Health Organization reports were used. We described the global epidemic status of EVD from 1976–2021, and assessed and ranked the importation risk of EVD from the diseaseoutbreaking countries into China using the risk matrix and Borda count methods, respectively.Results From 1976–2021, EVD mainly occurred in western and central Africa, with the highest cumulative number of cases(14,124 cases) in Sierra Leone, and the highest cumulative fatality rate(85%) in the Congo. Outbreaks of EVD have occurred in the Democratic Republic of the Congo and Guinea since 2018. The importation risk into China varies across countries with outbreaks of disease.The Democratic Republic of the Congo had an extremely high risk(23 Borda points), followed by Guinea and Liberia. Countries with a moderate importation risk were Nigeria, Uganda, Congo, Sierra Leone,Mali, and Gabon, while countries with a low importation risk included Sudan, Senegal, and Co te d’Ivoire.Conclusion China is under the risk of EVD importation with the globalization and severe epidemic status of EVD. Key attention need to be paid to the Democratic Republic of the Congo, Guinea, and Liberia. Therefore, it is necessary to prevent and prepare in advance for importation risk in China.
文摘The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.
文摘Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.
基金Supported by Natural Science Fundations of China and Shanghai.
文摘In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.
基金AHKJT of China under Grant Nos.1708085QE121 and 1808085ME147AHEDU of China under Grant No.TSKJ2017B13
文摘The characteristics of transverse free vibration of a tapered Timoshenko beam under an axially conservative compression resting on visco-Pasternak foundations are investigated by the interpolating matrix method. The research is executed in view of a three-parameter foundation which includes the eff ects of the Winkler coeffi cient, Pasternak coeffi cient and damping coeffi cient of the elastic medium. The governing equations of free vibration of a non-prismatic Timoshenko beam under an axially conservative force resting on visco-Pasternak foundations are transformed into ordinary diff erential equations with variable coeffi cients in light of the bending rotation angle and transverse displacement. All the natural frequencies orders together with the corresponding mode shapes of the beam are calculated at the same time, and a good convergence and accuracy of the proposed method is verifi ed through two numerical examples. The infl uences of foundation mechanical characteristics together with rotary inertia and shear deformation on natural frequencies of the beam with diff erent taper ratios are analyzed. A comprehensive parametric numerical study is carried out emphasizing the primary parameters that describe the dynamic property of the beam.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(Grants 20113219110025,20133219110037)the National Natural Science Foundation of China(Grants 11102089,61304137)the Program for New Century Excellent Talents in University(NCET-10-0075)
文摘The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed- loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bemoulli beam is used. A large thrust-to-weight ratio leads to large axial accelera- tions that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through com- parison to other approaches published in the literature.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
文摘High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode assembly. The effects of carbon and ionomer contents on the electrode micro-structure and fuel cell performance are investigated by physical characterization and single cell testing. The Pt nanowires are gradient distributed across the cathode thickness, and more Pt exists near the membrane. Both the carbon and ionomer contents can affect the Pt nanowires distribution and aggregation. In addition, the carbon loading dominates the transport distance of gas and proton, and the ionomer content affects the triple phase boundaries and porosity in the cathode. The optimal structure of Pt nanowire cathode is obtained at 0.10 mg·cm^-2 carbon loading and 10 wt% ionomer.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金Project(2007CB613706) supported by the National Basic Research Program of ChinaProject(00900054R4001) supported by Innovation Project for Talents of BJUTProject(00900054K4004) supported by the Science Foundation for Youths of BJUT
文摘SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.
基金supported by National Key Technology R&D Program of China (Grant No. 2006BAF01B09)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 200800060010)
文摘The hybrid dynamics of multi-rigid-body and multi-flexible-body system becomes the mainstream of multi-body dynamics.Currently there lacks a compact approach to model the hybrid dynamics,especially in modern machine tool application,due to the difficulty of solving the hybrid equations or the limitation of current software when dealing with the hybrid dynamics.The extended transfer matrix method(E-TMM),which extends elements in three-dimensional space with higher matrixes,is proposed to simplify the modeling process of the hybrid dynamics.The E-TMM modeling approaches of 3 basic elements including 3D vibrant rigid body,joint and flexible body are studied in details.A parallel mill-turn tool spindle head unit driven by dual-linear motors is chosen as a plant to demonstrate the E-TMM modeling process.By using E-TMM,the spindle head unit is simplified as a topological network consisting of the three types of element,i.e.,3D vibrant rigid body,joint and flexible body,including 11 rigid bodies,14 joints and 1 3D-Timoshenko beam.Then the dynamic model of the system can be easily obtained by deducing the element-network by means of state vector transformation.The dynamic characteristics of the spindle head,such as natural frequencies,dynamic flexibility,etc.can be predicted by solving the obtained model.Experiment verification indicates that the E-TMM is valid with enough accuracy in the dynamic analysis of the parallel mill-turn tool spindle head.The E-TMM is capable of modeling the dynamics of machine tool structure with no requirements of deducing and solving the sophisticated differential equations.Moreover,the E-TMM provides a simple and elegant tool for hybrid dynamic analysis in future dynamic design of machine tools.
基金Supported by National Natural Science Foundation of China (No.51275348)College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
文摘In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
基金supported by the National Natural Science Foundation of China (Nos. 71471087, 71071076, 61673209)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics (No. BCXJ17-11)the Research and Innovation Program for Graduate Education of Jiangsu Province (No. KYZZ160145)
文摘To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.
基金support from the Ministry of Education(MOE) Singapore Tier 1 (RG8/20)。
文摘A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science.
文摘The following is proved: 1) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular flexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt's method. Because of the resulting diagonal flexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency, is improved greatly. The numerical examples show that the method is effective.