The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and...BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and Western guidelines recom-mend antibiotic prophylaxis following hemostasis.However,given the impro-vements in prognosis for variceal bleeding due to advancements in the management of bleeding and treatments of liver cirrhosis and the global concerns regarding the emergence of multidrug-resistant bacteria,there is a need to reassess the use of routine antibiotic prophylaxis after hemostasis.AIM To evaluate the effectiveness of antibiotic prophylaxis in patients treated for EVL.METHODS We conducted a 13-year observational study using the Tokushukai medical database across 46 hospitals.Patients were divided into the prophylaxis group(received antibiotics on admission or the next day)and the non-prophylaxis group(did not receive antibiotics within one day of admission).The primary outcome was composed of 6-wk mortality,4-wk rebleeding,and 4-wk spontaneous bacterial peritonitis(SBP).The secondary outcomes were each individual result and in-hospital mortality.A logistic regression with inverse probability of treatment weighting was used.A subgroup analysis was conducted based on the Child-Pugh classification to determine its influence on the primary outcome measures,while sensitivity analyses for antibiotic type and duration were also performed.RESULTS Among 980 patients,790 were included(prophylaxis:232,non-prophylaxis:558).Most patients were males under the age of 65 years with a median Child-Pugh score of 8.The composite primary outcomes occurred in 11.2%of patients in the prophylaxis group and 9.5%in the non-prophylaxis group.No significant differences in outcomes were observed between the groups(adjusted odds ratio,1.11;95%confidence interval,0.61-1.99;P=0.74).Individual outcomes such as 6-wk mortality,4-wk rebleeding,4-wk onset of SBP,and in-hospital mortality were not significantly different between the groups.The primary outcome did not differ between the Child-Pugh subgroups.Similar results were observed in the sensitivity analyses.CONCLUSION No significant benefit to antibiotic prophylaxis for esophageal variceal bleeding treated with EVL was detected in this study.Global reassessment of routine antibiotic prophylaxis is imperative.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
We investigated ^(50,52-54)Cr-induced fusion reactions for the synthesis of the superheavy element in the 104≤Z≤122 range.The cross sections produced in this investigation using ^(54)Cr projectiles were compared wit...We investigated ^(50,52-54)Cr-induced fusion reactions for the synthesis of the superheavy element in the 104≤Z≤122 range.The cross sections produced in this investigation using ^(54)Cr projectiles were compared with those obtained in prior experiments.The estimated cross sections from this analysis are consistent with the findings of prior studies.From the current study,the predicted cross section was found to be 42fb at 236 MeV for ^(53)Cr+^(243)Am,23.2 fb at 236 MeV for ^(54)Cr+^(247)Cm,95.6 fb at 240 MeV for ^(53)Cr+248Bk,and 1.33 fb at 242 MeV for ^(53)Cr+250Cf.Consequently,these projected cross sections with excitation energy and beam energy will be useful in future Cr-induced fusion reaction investigations.展开更多
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v...Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.展开更多
Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning mas...Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.展开更多
The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macrosc...The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macroscopic variables in the stochastic dynamic system. Traditional methods for solving these equations often struggle with computational efficiency and scalability, particularly in high-dimensional contexts. To address these challenges, this paper proposes a novel deep learning method based on prior knowledge with dual training to solve the stationary FPK equations. Initially, the neural network is pre-trained through the prior knowledge obtained by Monte Carlo simulation(MCS). Subsequently, the second training phase incorporates the FPK differential operator into the loss function, while a supervisory term consisting of local maximum points is specifically included to mitigate the generation of zero solutions. This dual-training strategy not only expedites convergence but also enhances computational efficiency, making the method well-suited for high-dimensional systems. Numerical examples, including two different two-dimensional(2D), six-dimensional(6D), and eight-dimensional(8D) systems, are conducted to assess the efficacy of the proposed method. The results demonstrate robust performance in terms of both computational speed and accuracy for solving FPK equations in the first three systems. While the method is also applicable to high-dimensional systems, such as 8D, it should be noted that computational efficiency may be marginally compromised due to data volume constraints.展开更多
In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a sligh...In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.展开更多
With the increasing number of communication devices and the complexity of communication environments,unmanned aerial vehicles(UAV),due to their flexible deployment and convenient networking capabilities,have shown sig...With the increasing number of communication devices and the complexity of communication environments,unmanned aerial vehicles(UAV),due to their flexible deployment and convenient networking capabilities,have shown significant advantages in tasks such as high-density communication areas and emergency rescue within special communication scenarios.Considering the openness of air-toground wireless communication,it is more susceptible to eavesdropping attacks.As a result,the introduction of physical layer security(PLS)in UAV communication systems is crucial to safeguard the security of transmitted data.In this paper,we investigate the PLS issues in a UAV cooperative communication system operating in Nakagami-m fading channels with the presence of friendly interference.It considers the effects of imperfect successive interference cancellation(i SIC)and power allocation coefficients on system performance based on non-orthogonal multiple access(NOMA)techniques.By deriving closed-form expressions for the outage probabilities at the receiving users and the intercept probability of UAV eavesdropper(U-EAV),the performance of the considered cooperative UAV-assisted NOMA relay system with the presence of friendly interference is evaluated.展开更多
Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoret...Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.展开更多
Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage init...Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.展开更多
The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa...The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.展开更多
Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand...Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand the risk of disease outbreaks during expanding environmental perturbation.Here,we conducted a large survey based on microscopic examination and molecular analysis of haemosporidian parasite infection in raptors rescued at the Beijing Raptor Rescue Centre.Combining these data with biological and ecological variables of the raptors,we determined predictors that affect the probability of haemosporidian infection using generalized linear mixed models and multimodel inference.Our results showed that infection probability exhibited considerable variation across host species in raptors,and body mass,sex,and evolutionary history played relatively weaker roles in driving infection probability.Instead,activity pattern,age,geographic range size,migration distance,and nest type were important predictors of the probability of haemosporidian infection,and the role of each predictor differed in the three main haemosporidian genera(Plasmodium,Haemoproteus,and Leucocytozoon).This macro-ecological analysis will add to our understanding of host traits that influence the probability of avian haemosporidian infection and will help inform risk of emerging diseases.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Abstract:Background:The pTNM staging system is widely recognized as the most effective prognostic indicator for cancer.The latest update of this staging system introduced a new pathological staging system(ypTNM)for pa...Abstract:Background:The pTNM staging system is widely recognized as the most effective prognostic indicator for cancer.The latest update of this staging system introduced a new pathological staging system(ypTNM)for patients receiving neoadjuvant chemoradiotherapy(NACRT).However,whether the prognostic value of the ypTNM staging system for rectal cancer is similar to that of the pTNM staging system remains unclear.This study was conducted to compare the ypTNM and pTNM staging systems in terms of their prognostic value for patients with nonmetastatic rectal cancer undergoing proctectomy.Material and Methods:This study was conducted at a large teaching hospital.Between January 2014 and December 2022,542 patients with rectal cancer were analyzed(median follow-up period,60 months;range,6–105 months).Of them,258 and 284 were included in the pTNM and ypTNM groups,respectively.Inverse probability of treatment weighting(IPTW)was performed to account for the effects of confounders.Cox proportional-hazards regression was performed for the between-group comparison of overall survival(OS).Results:The crude model revealed that OS was similar between the two groups(p=0.607).After performing IPTW,we found that patients with the same ypTNM-and pTNM-classified stages had similar overall survival(hazard ratio=1.15;95%CI=0.76–1.73;p=0.5074).Conclusions:For patients with rectal cancer who have received preoperative NACRT,the prognostic value of ypTNM staging appears to be similar to that of pTNM staging,mostly because of the downstaging effect of neoadjuvant chemoradiotherapy。展开更多
Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair...Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金approved by the Institutional Review Board of the Future Medical Research Centre Ethical Committee(Approval No.TGE02100-02).
文摘BACKGROUND Esophageal variceal bleeding is a severe complication associated with liver cirrhosis and typically necessitates endoscopic hemostasis.The current standard treatment is endoscopic variceal ligation(EVL),and Western guidelines recom-mend antibiotic prophylaxis following hemostasis.However,given the impro-vements in prognosis for variceal bleeding due to advancements in the management of bleeding and treatments of liver cirrhosis and the global concerns regarding the emergence of multidrug-resistant bacteria,there is a need to reassess the use of routine antibiotic prophylaxis after hemostasis.AIM To evaluate the effectiveness of antibiotic prophylaxis in patients treated for EVL.METHODS We conducted a 13-year observational study using the Tokushukai medical database across 46 hospitals.Patients were divided into the prophylaxis group(received antibiotics on admission or the next day)and the non-prophylaxis group(did not receive antibiotics within one day of admission).The primary outcome was composed of 6-wk mortality,4-wk rebleeding,and 4-wk spontaneous bacterial peritonitis(SBP).The secondary outcomes were each individual result and in-hospital mortality.A logistic regression with inverse probability of treatment weighting was used.A subgroup analysis was conducted based on the Child-Pugh classification to determine its influence on the primary outcome measures,while sensitivity analyses for antibiotic type and duration were also performed.RESULTS Among 980 patients,790 were included(prophylaxis:232,non-prophylaxis:558).Most patients were males under the age of 65 years with a median Child-Pugh score of 8.The composite primary outcomes occurred in 11.2%of patients in the prophylaxis group and 9.5%in the non-prophylaxis group.No significant differences in outcomes were observed between the groups(adjusted odds ratio,1.11;95%confidence interval,0.61-1.99;P=0.74).Individual outcomes such as 6-wk mortality,4-wk rebleeding,4-wk onset of SBP,and in-hospital mortality were not significantly different between the groups.The primary outcome did not differ between the Child-Pugh subgroups.Similar results were observed in the sensitivity analyses.CONCLUSION No significant benefit to antibiotic prophylaxis for esophageal variceal bleeding treated with EVL was detected in this study.Global reassessment of routine antibiotic prophylaxis is imperative.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
文摘We investigated ^(50,52-54)Cr-induced fusion reactions for the synthesis of the superheavy element in the 104≤Z≤122 range.The cross sections produced in this investigation using ^(54)Cr projectiles were compared with those obtained in prior experiments.The estimated cross sections from this analysis are consistent with the findings of prior studies.From the current study,the predicted cross section was found to be 42fb at 236 MeV for ^(53)Cr+^(243)Am,23.2 fb at 236 MeV for ^(54)Cr+^(247)Cm,95.6 fb at 240 MeV for ^(53)Cr+248Bk,and 1.33 fb at 242 MeV for ^(53)Cr+250Cf.Consequently,these projected cross sections with excitation energy and beam energy will be useful in future Cr-induced fusion reaction investigations.
基金National Natural Science Foundation of China(Grant Nos.62005276,62175234)the Scientific and Technological Development Program of Jilin,China(Grant No.20230508111RC)to provide fund for this research。
文摘Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.
基金supported in part by National Natural Science Foundation of China under Grant 62371262 and 61971467in part by the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1+1 种基金in part by the Qinlan Project of Jiangsu Provincein part by the Scientific Research Program of Nantong under Grant JC22022026
文摘Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No.12172226)。
文摘The evolution of the probability density function of a stochastic dynamical system over time can be described by a Fokker–Planck–Kolmogorov(FPK) equation, the solution of which determines the distribution of macroscopic variables in the stochastic dynamic system. Traditional methods for solving these equations often struggle with computational efficiency and scalability, particularly in high-dimensional contexts. To address these challenges, this paper proposes a novel deep learning method based on prior knowledge with dual training to solve the stationary FPK equations. Initially, the neural network is pre-trained through the prior knowledge obtained by Monte Carlo simulation(MCS). Subsequently, the second training phase incorporates the FPK differential operator into the loss function, while a supervisory term consisting of local maximum points is specifically included to mitigate the generation of zero solutions. This dual-training strategy not only expedites convergence but also enhances computational efficiency, making the method well-suited for high-dimensional systems. Numerical examples, including two different two-dimensional(2D), six-dimensional(6D), and eight-dimensional(8D) systems, are conducted to assess the efficacy of the proposed method. The results demonstrate robust performance in terms of both computational speed and accuracy for solving FPK equations in the first three systems. While the method is also applicable to high-dimensional systems, such as 8D, it should be noted that computational efficiency may be marginally compromised due to data volume constraints.
基金This work was supported by the National Nature Science Foundation of China(Nos.12375244,12135009)the Science and Technology Innovation Program of Hunan Province(No.2020RC4020)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20210007)Natural Science Research Project of Yichang City(No.A23-2-028).
文摘In this study, the effect of extreme laser fields on the α decay process of ground-state even–even nuclei was investigated.Using the deformed Gamow-like model, we found that state-of-the-art lasers can cause a slight change in the α decay penetration probability of most nuclei. In addition, we studied the correlation between the rate of change of the α decay penetration probability and angle between the directions of the laser electric field and α particle emission for different nuclei. Based on this correlation, the average effect of extreme laser fields on the half-life of many nuclei with arbitrary α particle emission angles was calculated. The calculations show that the laser suppression and promotion effects on the α decay penetration probability of the nuclei population with completely random α particle-emission directions are not completely canceled.The remainder led to a change in the average penetration probability of the nuclei. Furthermore, the possibility of achieving a higher average rate of change by altering the spatial shape of the laser is explored. We conclude that circularly polarized lasers may be helpful in future experiments to achieve a more significant average rate of change of the α decay half-life of the nuclei population.
基金supported by the National Natural Science Foundation of China under Grant(61901201,62001359)the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Universitythe Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)。
文摘With the increasing number of communication devices and the complexity of communication environments,unmanned aerial vehicles(UAV),due to their flexible deployment and convenient networking capabilities,have shown significant advantages in tasks such as high-density communication areas and emergency rescue within special communication scenarios.Considering the openness of air-toground wireless communication,it is more susceptible to eavesdropping attacks.As a result,the introduction of physical layer security(PLS)in UAV communication systems is crucial to safeguard the security of transmitted data.In this paper,we investigate the PLS issues in a UAV cooperative communication system operating in Nakagami-m fading channels with the presence of friendly interference.It considers the effects of imperfect successive interference cancellation(i SIC)and power allocation coefficients on system performance based on non-orthogonal multiple access(NOMA)techniques.By deriving closed-form expressions for the outage probabilities at the receiving users and the intercept probability of UAV eavesdropper(U-EAV),the performance of the considered cooperative UAV-assisted NOMA relay system with the presence of friendly interference is evaluated.
文摘Obstacle removal in crowd evacuation is critical to safety and the evacuation system efficiency. Recently, manyresearchers proposed game theoreticmodels to avoid and remove obstacles for crowd evacuation. Game theoreticalmodels aim to study and analyze the strategic behaviors of individuals within a crowd and their interactionsduring the evacuation. Game theoretical models have some limitations in the context of crowd evacuation. Thesemodels consider a group of individuals as homogeneous objects with the same goals, involve complex mathematicalformulation, and cannot model real-world scenarios such as panic, environmental information, crowds that movedynamically, etc. The proposed work presents a game theoretic model integrating an agent-based model to removethe obstacles from exits. The proposed model considered the parameters named: (1) obstacle size, length, andwidth, (2) removal time, (3) evacuation time, (4) crowd density, (5) obstacle identification, and (6) route selection.The proposed work conducts various experiments considering different conditions, such as obstacle types, obstacleremoval, and several obstacles. Evaluation results show the proposed model’s effectiveness compared with existingliterature in reducing the overall evacuation time, cell selection, and obstacle removal. The study is potentially usefulfor public safety situations such as emergency evacuations during disasters and calamities.
基金supported by the National Natural Science Foundation of China(No.22173042,No.21973037,No.22073089,and No.22327801)the In-novation program for Quantum Science and Technolo-gy(No.2021ZD0303304)+2 种基金the Guangdong Science and Technology Program(No.2019ZT08L455 and No.2019JC01X091)the Shenzhen Science and Technology Program(No.ZDSYS2020421111001787)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450101).
文摘Dissociative adsorption of HCl on Au(111)has become one of unsolved puzzles in surface chemistry.Despite tremendous efforts in the past years,varioustheoretical models still greatly overestimate the zero-coverage initial sticking probabilities(So).To find the origin of the large experiment-theory discrepancy,we have revisited the dissociative adsorption of HCl on Au(111)with a newly designed molecular beam-surface apparatus.The zero-coverage So derived from Cl-coverage measurements with varying HCl doses agree well with previous ones.However,we notice a sharp change of the coverage/dose slope with the HCl dosage at the low coverage regime,which may result in some uncertainties to the fitted So value.This seems consistent with a coverage-dependence of the dissociation barrier predicted by density functional theory at low Cl-coverages.Our results reveal the potential inconsistency of utilizing simulations with finite coverage to compare against experimental data with zero coverage in this system,and provide guidance for improving both experiment and theory in this regard.
文摘The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments.
基金funded by the National Natural Science Foundation of China(No.210100191).
文摘Variations in host traits that influence their exposure and susceptibility may impact probability of vector-transmitted diseases.Therefore,identifying the predictors of infection probability is necessary to understand the risk of disease outbreaks during expanding environmental perturbation.Here,we conducted a large survey based on microscopic examination and molecular analysis of haemosporidian parasite infection in raptors rescued at the Beijing Raptor Rescue Centre.Combining these data with biological and ecological variables of the raptors,we determined predictors that affect the probability of haemosporidian infection using generalized linear mixed models and multimodel inference.Our results showed that infection probability exhibited considerable variation across host species in raptors,and body mass,sex,and evolutionary history played relatively weaker roles in driving infection probability.Instead,activity pattern,age,geographic range size,migration distance,and nest type were important predictors of the probability of haemosporidian infection,and the role of each predictor differed in the three main haemosporidian genera(Plasmodium,Haemoproteus,and Leucocytozoon).This macro-ecological analysis will add to our understanding of host traits that influence the probability of avian haemosporidian infection and will help inform risk of emerging diseases.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金supported by grants through funding from the National Science and Technology Council(MOST 111-2314-B-037-070-MY3,NSTC 112-2314-B-037-090,NSTC 112-2314-B-037-050-MY3)the Ministry of Health and Welfare(12D1-IVMOHW02)and funded by the Health and Welfare Surcharge of on Tobacco Products,and the Kaohsiung Medical University Hospital(KMUH112-2R37,KMUH112-2R38,KMUH112-2R39,KMUH112-2M27,KMUH112-2M28,KMUH112-2M29,KMUH-SH11207)Kaohsiung Medical University Research Center Grant(KMU-TC112A04).
文摘Abstract:Background:The pTNM staging system is widely recognized as the most effective prognostic indicator for cancer.The latest update of this staging system introduced a new pathological staging system(ypTNM)for patients receiving neoadjuvant chemoradiotherapy(NACRT).However,whether the prognostic value of the ypTNM staging system for rectal cancer is similar to that of the pTNM staging system remains unclear.This study was conducted to compare the ypTNM and pTNM staging systems in terms of their prognostic value for patients with nonmetastatic rectal cancer undergoing proctectomy.Material and Methods:This study was conducted at a large teaching hospital.Between January 2014 and December 2022,542 patients with rectal cancer were analyzed(median follow-up period,60 months;range,6–105 months).Of them,258 and 284 were included in the pTNM and ypTNM groups,respectively.Inverse probability of treatment weighting(IPTW)was performed to account for the effects of confounders.Cox proportional-hazards regression was performed for the between-group comparison of overall survival(OS).Results:The crude model revealed that OS was similar between the two groups(p=0.607).After performing IPTW,we found that patients with the same ypTNM-and pTNM-classified stages had similar overall survival(hazard ratio=1.15;95%CI=0.76–1.73;p=0.5074).Conclusions:For patients with rectal cancer who have received preoperative NACRT,the prognostic value of ypTNM staging appears to be similar to that of pTNM staging,mostly because of the downstaging effect of neoadjuvant chemoradiotherapy。
基金Supported by the Natural Science Foundation of China(12071487,11671404)the Natural Science Foundation of Anhui Province(2208085MA06)+1 种基金the Provincial Natural Science Research Project of Anhui Colleges(KJ2021A0049,KJ2021A0060)Hunan Provincial Innovation Foundation for Postgraduate(CX20200146)。
文摘Consider a nonstandard continuous-time bidimensional risk model with constant force of interest,in which the two classes of claims with subexponential distributions satisfy a general dependence structure and each pair of the claim-inter-arrival times is arbitrarily dependent.Under some mild conditions,we achieve a locally uniform approximation of the finite-time ruin probability for all time horizon within a finite interval.If we further assume that each pair of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims are consistently-varying-tailed,it shows that the above obtained approximation is also globally uniform for all time horizon within an infinite interval.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.