Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Adv...Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.展开更多
The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectr...The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectrode electrochemical measurement technology was applied to identify electrochemistry behaviors during tribocorrosion tests in situ.The surface morphologies and compositions of the wear tracks were analyzed by scanning electron microscopy and Raman spectrum.The results showed that compositions of stainless steels,corrosive mediums and applied loads have great influence on tribocorrosion behaviors of stainless steels.Firstly,the corrosion resistance in static state of stainless steels primarily dominates its tribocorrosion behavior;meanwhile,better mechanical properties are in favor of tribocorrosion resistance.Secondly,the corrosion rate is promoted significantly in 3.5%NaCl solution by friction,while the tendency is inconspicuous in 0.5 mol/L H2SO4 solution.Last but not least,passive films on stainless steels can be wiped off by small friction force.With the increase in applied load,the effect of friction converts to forming friction oxide film from removing passivation film,so that a critical load exists below which the friction force can promote the corrosion process extremely.展开更多
基金supported by the National Natural Science Foundation of China(Nos.T2293730,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)+1 种基金the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210004).
文摘Deep brain stimulation(DBS),including optical stimulation and electrical stimulation,has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders.Advances in DBS microsystems based on implantable microelectrode array(MEA)probes have opened up new opportunities for closed-loop DBS(CL-DBS)in situ.This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems,key challenges,including excessive wired communication,need to be urgently resolved.In this review,we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field.This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
基金supported by PetroChina Key Core Technology Project(21ZG10)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDC04040400).
文摘The corrosion and tribocorrosion behaviors of AISI 304 austenitic stainless steel and Cr26Mo1 ultrapure high chromium ferrite stainless steel in 3.5 wt.%NaCl and 0.5 mol/L H2SO4 solutions were investigated.Microelectrode electrochemical measurement technology was applied to identify electrochemistry behaviors during tribocorrosion tests in situ.The surface morphologies and compositions of the wear tracks were analyzed by scanning electron microscopy and Raman spectrum.The results showed that compositions of stainless steels,corrosive mediums and applied loads have great influence on tribocorrosion behaviors of stainless steels.Firstly,the corrosion resistance in static state of stainless steels primarily dominates its tribocorrosion behavior;meanwhile,better mechanical properties are in favor of tribocorrosion resistance.Secondly,the corrosion rate is promoted significantly in 3.5%NaCl solution by friction,while the tendency is inconspicuous in 0.5 mol/L H2SO4 solution.Last but not least,passive films on stainless steels can be wiped off by small friction force.With the increase in applied load,the effect of friction converts to forming friction oxide film from removing passivation film,so that a critical load exists below which the friction force can promote the corrosion process extremely.