Objective To assess the utility of low- and high-frequency tympanometry in the diagnosis of middle ear dysfunction in Chinese infants. Methods Tympanograms were obtained with 226 Hz, 678 Hz and 1000 Hz probe tones fro...Objective To assess the utility of low- and high-frequency tympanometry in the diagnosis of middle ear dysfunction in Chinese infants. Methods Tympanograms were obtained with 226 Hz, 678 Hz and 1000 Hz probe tones from infants aged 5-25 weeks with normal auditory brainstem responses(ABRs)(15 infants, 30 ears) and with prolonged wave I latencies(17 infants, 20 ears), suggesting middle ear dysfunction, using a GSI Tympstar middle ear analyzer Version II. Results The single-peaked tympanogram was the most characteristic type in both groups and seen in 25 ears (83.3%) in the normal ABR group and in 18 ears (90%) in the delayed wave I group, respectively. The peak pressure, peak compensated static acoustic admittance and gradient of 226 Hz tympanometry were of no significant differences between the two groups. The 678 Hz tympanograms of admittance, susceptance and conductance demonstrated non-peak, single-, double- and tri-peaked patterns in both groups. The agreement between ABRs and 678 Hz tympanograms of admittance,susceptance and conductance were 70.0%, 58.0% and 64.0%(kappa=0.324, 0.234 and 0.118) respectively. For 1000 Hz probe tone, admittance, susceptance and conductance tympanograms showed single peaked patterns in 28(93.3%), 25 (83.3%) and 26(86.7%) of the 30 normal ears. Admittance, susceptance and conductance tympanograms using the 1000 Hz probe tone were flat in 15 (75%), 17(85%) and 13 (65%) of the ears in infants with prolonged wave I latencies. For 1000 Hz admittance, susceptance and conductance Tympanograms, the agreement between tympanometry and ABR results were 90.0%, 92.0% and 86.0% with kappa at 0.783, 0.831 and 0.690, respectively. Conclusion 1000 Hz probe tone tympanometry is a promising middle ear function test for infants of 1-6 months age, while 226 Hz and 678 Hz probe tones are less efficient in detecting middle ear dysfunction in infants.展开更多
文摘Objective To assess the utility of low- and high-frequency tympanometry in the diagnosis of middle ear dysfunction in Chinese infants. Methods Tympanograms were obtained with 226 Hz, 678 Hz and 1000 Hz probe tones from infants aged 5-25 weeks with normal auditory brainstem responses(ABRs)(15 infants, 30 ears) and with prolonged wave I latencies(17 infants, 20 ears), suggesting middle ear dysfunction, using a GSI Tympstar middle ear analyzer Version II. Results The single-peaked tympanogram was the most characteristic type in both groups and seen in 25 ears (83.3%) in the normal ABR group and in 18 ears (90%) in the delayed wave I group, respectively. The peak pressure, peak compensated static acoustic admittance and gradient of 226 Hz tympanometry were of no significant differences between the two groups. The 678 Hz tympanograms of admittance, susceptance and conductance demonstrated non-peak, single-, double- and tri-peaked patterns in both groups. The agreement between ABRs and 678 Hz tympanograms of admittance,susceptance and conductance were 70.0%, 58.0% and 64.0%(kappa=0.324, 0.234 and 0.118) respectively. For 1000 Hz probe tone, admittance, susceptance and conductance tympanograms showed single peaked patterns in 28(93.3%), 25 (83.3%) and 26(86.7%) of the 30 normal ears. Admittance, susceptance and conductance tympanograms using the 1000 Hz probe tone were flat in 15 (75%), 17(85%) and 13 (65%) of the ears in infants with prolonged wave I latencies. For 1000 Hz admittance, susceptance and conductance Tympanograms, the agreement between tympanometry and ABR results were 90.0%, 92.0% and 86.0% with kappa at 0.783, 0.831 and 0.690, respectively. Conclusion 1000 Hz probe tone tympanometry is a promising middle ear function test for infants of 1-6 months age, while 226 Hz and 678 Hz probe tones are less efficient in detecting middle ear dysfunction in infants.