This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the th...This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of suff...This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.展开更多
Exploring the problems existing in the process of carrying out an elderly competency assessment aims to provide useful references for its improvement.Starting from the importance of elderly competency assessment in th...Exploring the problems existing in the process of carrying out an elderly competency assessment aims to provide useful references for its improvement.Starting from the importance of elderly competency assessment in the field of elderly services,this paper analyses the problems in the process of carrying out elderly competency assessment and explores the corresponding solutions.The analysis finds that problems in the process of carrying out elderly competency assessment are inevitable,but as long as the study continues to explore and innovate and actively seek solution paths,the study will be able to overcome these difficulties and provide the elderly with better and more efficient elderly services.展开更多
From the perspective of the digital economy,enterprise financial management is facing unprecedented challenges and opportunities.Traditional financial management models are no longer suited to current development need...From the perspective of the digital economy,enterprise financial management is facing unprecedented challenges and opportunities.Traditional financial management models are no longer suited to current development needs.Fine-tuning financial management is essential to support the modernization of enterprises,guard against operational risks,and promote coordination across the entire value chain for greater economic efficiency.With the help of digital technology,data-driven,highly interconnected,and intelligent decision-making processes are becoming more prominent,profoundly transforming the operational and financial management models of enterprises.This enables financial management to keep pace with modern developments.In light of this,the paper explores the connotations and mechanisms of the digital economy and enterprise financial management,clarifies relevant conceptual characteristics,and identifies problems in financial management under the digital economy.It also offers strategies for optimization and problem-solving,with the aim of providing valuable insights for educators and practitioners.展开更多
The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation a...The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.展开更多
The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) a...The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) andNearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics,focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative thatminimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting withan initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half Max routine.The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSPbenchmarks. The results indicate that HMIH consistently delivers superior performance, particularly with respectto tour cost and computational efficiency. HMIH’s tours were sometimes 16% shorter than those generated by FIHand NNH, showcasing its potential and value as a novel benchmark for TSP solutions. The study used statisticalmethods, including Friedman’s Non-parametric Test, to validate the performance of HMIH over FIH and NNH.This guarantees that the identified advantages are statistically significant and consistent in various situations. Thiscomprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for itsuse in solving TSP issues. The research shows that, in general, HMIH fared better than FIH in all cases studied,except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better thanHMIH. HMIH’s efficiency is shown by its improvements in error percentage (δ) and goodness values (g) comparedto FIH and NNH. In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had20.9%, indicating that HMIH was closer to the optimal solution. HMIH consistently showed superior performanceacross many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match tothe optimal tour costs. This study substantially contributes to combinatorial optimization by enhancing currentinsertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem. It also createsnew possibilities for progress in heuristic design and optimization methodologies.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Globally,population dynamics are shifting towards increased life expectancy,and many countries,including Greece,face significant demographic challenges.Greece is particularly impacted by one of the lowest birth rates ...Globally,population dynamics are shifting towards increased life expectancy,and many countries,including Greece,face significant demographic challenges.Greece is particularly impacted by one of the lowest birth rates in the world and a rapidly aging population.This demographic shift places unprecedented pressure on the nation’s pension systems and economic stability,as more people retire than enter the workforce.This study aims to explore the historical factors contributing to Greece’s demographic situation,analyze the consequences of current trends,and propose strategic solutions.The research utilizes a literature review approach and the case study of Greece to understand the depth and breadth of the demographic crisis.Key areas of focus include the declining birth rate,the economic implications of an aging population,and the potential of migration and policy reform to rejuvenate demographic dynamics.The study evaluates various policy interventions from other countries to propose a tailored,multi-faceted strategy for Greece.These strategies emphasize economic incentives for young families,improved childcare and parental support,healthcare investment,and inclusive migration policies to enhance workforce numbers.This comprehensive approach seeks to provide actionable insights that can help Greece mitigate the effects of demographic decline and foster a more sustainable future,aligning policy interventions with socio-economic and cultural realities.展开更多
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’...To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.展开更多
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) ...The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .展开更多
Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and s...Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
International transmission of Chinese medical culture is of great importance for the worldwide spread of traditional Chinese culture, which faces many problems, like the serious impact from western medicine and other ...International transmission of Chinese medical culture is of great importance for the worldwide spread of traditional Chinese culture, which faces many problems, like the serious impact from western medicine and other traditional medicines, low professional quality of its practitioners, language barriers, etc. It's urgent to propose some practical solutions.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
文摘This paper considers the regularity of solutions to mixed boundary value problems in small-angle regions for elliptic equations. By constructing a specific barrier function, we proved that under the assumption of sufficient regularity of boundary conditions and coefficients, as long as the angle is sufficiently small, the regularity of the solution to the mixed boundary value problem of the second-order elliptic equation can reach any order.
文摘Exploring the problems existing in the process of carrying out an elderly competency assessment aims to provide useful references for its improvement.Starting from the importance of elderly competency assessment in the field of elderly services,this paper analyses the problems in the process of carrying out elderly competency assessment and explores the corresponding solutions.The analysis finds that problems in the process of carrying out elderly competency assessment are inevitable,but as long as the study continues to explore and innovate and actively seek solution paths,the study will be able to overcome these difficulties and provide the elderly with better and more efficient elderly services.
基金the research result of“Financial Accounting”(Project No.HKSZ2024-10)supported by the Ideological and Political Demonstration Project of Hainan Vocational University of Science and Technology.
文摘From the perspective of the digital economy,enterprise financial management is facing unprecedented challenges and opportunities.Traditional financial management models are no longer suited to current development needs.Fine-tuning financial management is essential to support the modernization of enterprises,guard against operational risks,and promote coordination across the entire value chain for greater economic efficiency.With the help of digital technology,data-driven,highly interconnected,and intelligent decision-making processes are becoming more prominent,profoundly transforming the operational and financial management models of enterprises.This enables financial management to keep pace with modern developments.In light of this,the paper explores the connotations and mechanisms of the digital economy and enterprise financial management,clarifies relevant conceptual characteristics,and identifies problems in financial management under the digital economy.It also offers strategies for optimization and problem-solving,with the aim of providing valuable insights for educators and practitioners.
基金the National Natural Science Foundation of China (Grant Nos.52379111,51979270 and 52208380).
文摘The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.
基金the Centre of Excellence in Mobile and e-Services,the University of Zululand,Kwadlangezwa,South Africa.
文摘The studypresents theHalfMax InsertionHeuristic (HMIH) as a novel approach to solving theTravelling SalesmanProblem (TSP). The goal is to outperform existing techniques such as the Farthest Insertion Heuristic (FIH) andNearest Neighbour Heuristic (NNH). The paper discusses the limitations of current construction tour heuristics,focusing particularly on the significant margin of error in FIH. It then proposes HMIH as an alternative thatminimizes the increase in tour distance and includes more nodes. HMIH improves tour quality by starting withan initial tour consisting of a ‘minimum’ polygon and iteratively adding nodes using our novel Half Max routine.The paper thoroughly examines and compares HMIH with FIH and NNH via rigorous testing on standard TSPbenchmarks. The results indicate that HMIH consistently delivers superior performance, particularly with respectto tour cost and computational efficiency. HMIH’s tours were sometimes 16% shorter than those generated by FIHand NNH, showcasing its potential and value as a novel benchmark for TSP solutions. The study used statisticalmethods, including Friedman’s Non-parametric Test, to validate the performance of HMIH over FIH and NNH.This guarantees that the identified advantages are statistically significant and consistent in various situations. Thiscomprehensive analysis emphasizes the reliability and efficiency of the heuristic, making a compelling case for itsuse in solving TSP issues. The research shows that, in general, HMIH fared better than FIH in all cases studied,except for a few instances (pr439, eil51, and eil101) where FIH either performed equally or slightly better thanHMIH. HMIH’s efficiency is shown by its improvements in error percentage (δ) and goodness values (g) comparedto FIH and NNH. In the att48 instance, HMIH had an error rate of 6.3%, whereas FIH had 14.6% and NNH had20.9%, indicating that HMIH was closer to the optimal solution. HMIH consistently showed superior performanceacross many benchmarks, with lower percentage error and higher goodness values, suggesting a closer match tothe optimal tour costs. This study substantially contributes to combinatorial optimization by enhancing currentinsertion algorithms and presenting a more efficient solution for the Travelling Salesman Problem. It also createsnew possibilities for progress in heuristic design and optimization methodologies.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘Globally,population dynamics are shifting towards increased life expectancy,and many countries,including Greece,face significant demographic challenges.Greece is particularly impacted by one of the lowest birth rates in the world and a rapidly aging population.This demographic shift places unprecedented pressure on the nation’s pension systems and economic stability,as more people retire than enter the workforce.This study aims to explore the historical factors contributing to Greece’s demographic situation,analyze the consequences of current trends,and propose strategic solutions.The research utilizes a literature review approach and the case study of Greece to understand the depth and breadth of the demographic crisis.Key areas of focus include the declining birth rate,the economic implications of an aging population,and the potential of migration and policy reform to rejuvenate demographic dynamics.The study evaluates various policy interventions from other countries to propose a tailored,multi-faceted strategy for Greece.These strategies emphasize economic incentives for young families,improved childcare and parental support,healthcare investment,and inclusive migration policies to enhance workforce numbers.This comprehensive approach seeks to provide actionable insights that can help Greece mitigate the effects of demographic decline and foster a more sustainable future,aligning policy interventions with socio-economic and cultural realities.
文摘To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
文摘The paper describes some implementation aspects of an algorithm for approximate solution of the traveling salesman problem based on the construction of convex closed contours on the initial set of points (“cities”) and their subsequent combination into a closed path (the so-called contour algorithm or “onion husk” algorithm). A number of heuristics related to the different stages of the algorithm are considered, and various variants of the algorithm based on these heuristics are analyzed. Sets of randomly generated points of different sizes (from 4 to 90 and from 500 to 10,000) were used to test the algorithms. The numerical results obtained are compared with the results of two well-known combinatorial optimization algorithms, namely the algorithm based on the branch and bound method and the simulated annealing algorithm. .
文摘Transportation problem has many real world applications, it can be solved by linear programming model, but in most time the model exists more for less paradox, this paper considers the reasons for the paradox and search the way to eliminate the phenomenon. First this paper formulates a loose constrained linear programming model for the transportation problem, and gives the definition of the paradox which exists in it, some preliminary notions and one example is also given. Then it gives a table based algorithm for the loose constrained model, the steps of the algorithm and example will follow. The examples show that: (1) It is not a contradictory that transportation problem exists more for less paradox. (2) The loose constrained model is better used in practice for its less total cost. (3) The algorithm is easy to calculate, to study and highly speed to convergence. Finally, comparied with other ways it shows that the loose constrained model can thoroughly eliminate the paradox.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
基金sponsored by academic programs of Hubei provincial department of education(15Q112)
文摘International transmission of Chinese medical culture is of great importance for the worldwide spread of traditional Chinese culture, which faces many problems, like the serious impact from western medicine and other traditional medicines, low professional quality of its practitioners, language barriers, etc. It's urgent to propose some practical solutions.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.