This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations s...This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit...A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On展开更多
Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential ...Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.展开更多
For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint ...For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.展开更多
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula...This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.展开更多
In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al...In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.展开更多
Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different ...Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is...A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is helpful to a pilot to possess the favourable position in an air-to-air combat in plane.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
The data of the year 1992 from 25 geomagnetic observatories affiliated to the geomagnetic network of State Seismological Bureau of China were processed using the principle of geomagnetic spatial gradient method. Throu...The data of the year 1992 from 25 geomagnetic observatories affiliated to the geomagnetic network of State Seismological Bureau of China were processed using the principle of geomagnetic spatial gradient method. Through finding out the polynomial form of optimum fitting, comparatively good C values for four harmonic components of diurnal variations were obtained. By using the inverse method of non linear underdetermined problem, the electrical conductivity structures under the observatories were investgated. It is shown that there are differences of the C values and conductivity structures in the deep underground under the south western part and northern parts and other parts of China. We studied the possibility of improving the gradient method for investigation of the deep underground conductivity structure, and it is indicated that the gradient method is hopeful in the investigation of earth′s deep conductivity structure and the applied studies concerned.展开更多
The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, w...The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.展开更多
In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational ...In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.展开更多
This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior p...This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior problem and real truncated Hilbert transform,and then outline the implementation steps of DBP-POCS.After that,we introduce the middle-part known condition for region of interest (ROI) accurate reconstruction and the unique condition of the interior problem,and verify the uniqueness and stability of the interior problem accurate reconstruction through numerical experiments,and then compare the results for the interior problem in reconstruction images using filtered backprojection (FBP).In addition,the authors also design the application models of ROI reconstruction and make an initial attempt to the application of DBP-POCS method in the interior problem.展开更多
This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly,...This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.展开更多
In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic be...In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
基金supported by the National Natural Science Foundation of China (11172291)the National Science Foundation for Post-doctoral Scientists of China (2012M510162)the Fundamental Research Funds for the Central Universities (KB2090050024)
文摘This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On
文摘Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.
文摘For the 2-D wave inverse problems introduced from geophysical exploration, in this paper, the author presents integration-characteristic method to solve the velocity parameter, and then applies it to common shotpoint model data, in noise-free case. The accuracy is quite good.
基金supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.
文摘In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method.
基金supported by a grant from the National Natural Science Foundation of China (NSFC) No. 81070826/30872886/30400497Sponsored by Shanghai Rising-Star Program No. 09QA1403700+1 种基金funded by Shanghai Leading Academic Discipline Project (Project Number: S30206)the Science and Technology Commission of Shanghai (08DZ2271100)
文摘Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.
文摘A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is helpful to a pilot to possess the favourable position in an air-to-air combat in plane.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
文摘The data of the year 1992 from 25 geomagnetic observatories affiliated to the geomagnetic network of State Seismological Bureau of China were processed using the principle of geomagnetic spatial gradient method. Through finding out the polynomial form of optimum fitting, comparatively good C values for four harmonic components of diurnal variations were obtained. By using the inverse method of non linear underdetermined problem, the electrical conductivity structures under the observatories were investgated. It is shown that there are differences of the C values and conductivity structures in the deep underground under the south western part and northern parts and other parts of China. We studied the possibility of improving the gradient method for investigation of the deep underground conductivity structure, and it is indicated that the gradient method is hopeful in the investigation of earth′s deep conductivity structure and the applied studies concerned.
文摘The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.
文摘In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.
基金supported by the National Natural Science Foundation of China (Grant No.60872116)
文摘This work focuses on the application of the reconstruction method of differentiated backprojection (DBP)-projection onto convex sets (POCS) in the interior problem.First,we present the definition of the interior problem and real truncated Hilbert transform,and then outline the implementation steps of DBP-POCS.After that,we introduce the middle-part known condition for region of interest (ROI) accurate reconstruction and the unique condition of the interior problem,and verify the uniqueness and stability of the interior problem accurate reconstruction through numerical experiments,and then compare the results for the interior problem in reconstruction images using filtered backprojection (FBP).In addition,the authors also design the application models of ROI reconstruction and make an initial attempt to the application of DBP-POCS method in the interior problem.
文摘This paper is taken up for the following difference equation problem (Pe);where e is a small parameter, c1, c2,constants and functions of k and e . Firstly, the case with constant coefficients is considered. Secondly, a general method based on extended transformation is given to handle (P.) where the coefficients may be variable and uniform asymptotic expansions are obtained. Finally, a numerical example is provided to illustrate the proposed method.
文摘In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.