This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a po...Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.展开更多
Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analy...Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.展开更多
When using the random process in soil profile modeling, the stationary and ergodicity of the soil properties in the profile must be tested. This paper describes a procedure for stationary and ergodicity testing. Numer...When using the random process in soil profile modeling, the stationary and ergodicity of the soil properties in the profile must be tested. This paper describes a procedure for stationary and ergodicity testing. Numerical examples were given for demonstration. A log-cosine function is suggested to simulate the correlation function, which has been proved to be good for soil profile modeling.展开更多
We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a param...We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a parameter estimation method of our model. Then, we derive several software reliability assessment measures by the probability distribution of its solution process, and compare our model with existing continuous-state space software reliability growth models in terms of the mean square error and the Akaike’s information criterion by using actual fault count data.展开更多
The aim of this work is to analyse the global dynamics of an extended mathematical model of Hepatitis C virus (HCV) infection in vivo with cellular proliferation, spontaneous cure and hepatocyte homeostasis. We firstl...The aim of this work is to analyse the global dynamics of an extended mathematical model of Hepatitis C virus (HCV) infection in vivo with cellular proliferation, spontaneous cure and hepatocyte homeostasis. We firstly prove the existence of local and global solutions of the model and establish some properties of this solution as positivity and asymptotic behaviour. Secondly we show, by the construction of appropriate Lyapunov functions, that the uninfected equilibrium and the unique infected equilibrium of the mathematical model of HCV are globally asymptotically stable respectively when the threshold number and when .展开更多
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr...A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.展开更多
Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rate...Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.展开更多
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
文摘Current research is concerned with the stability of stochastic logistic equation with Ornstein-Uhlenbeck process. First, this research proves that the stochastic logistic model with Ornstein-Uhlenbeck process has a positive solution. After that, it also introduces the sufficient conditions for stochastically stability of stochastic logistic model for cell growth of microorganism in fermentation process for positive equilibrium point by using Lyapunov function. In addition, this research establishes the sufficient conditions for zero solution as mentioned in Appendix A due to the cell growth of microorganism μmax, which cannot be negative in fermentation process. Furthermore, for numerical simulation, current research uses the 4-stage stochastic Runge-Kutta (SRK4) method to show the reality of the results.
基金This work was financially supported by the National Key Science-Technology Project during the Tenth Five-Year-Plan period of China under Grant No.2001BA609A and No.2004BA615A.
文摘Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.
文摘When using the random process in soil profile modeling, the stationary and ergodicity of the soil properties in the profile must be tested. This paper describes a procedure for stationary and ergodicity testing. Numerical examples were given for demonstration. A log-cosine function is suggested to simulate the correlation function, which has been proved to be good for soil profile modeling.
文摘We propose a software reliability growth model with testing-effort based on a continuous-state space stochastic process, such as a lognormal process, and conduct its goodness-of-fit evaluation. We also discuss a parameter estimation method of our model. Then, we derive several software reliability assessment measures by the probability distribution of its solution process, and compare our model with existing continuous-state space software reliability growth models in terms of the mean square error and the Akaike’s information criterion by using actual fault count data.
文摘The aim of this work is to analyse the global dynamics of an extended mathematical model of Hepatitis C virus (HCV) infection in vivo with cellular proliferation, spontaneous cure and hepatocyte homeostasis. We firstly prove the existence of local and global solutions of the model and establish some properties of this solution as positivity and asymptotic behaviour. Secondly we show, by the construction of appropriate Lyapunov functions, that the uninfected equilibrium and the unique infected equilibrium of the mathematical model of HCV are globally asymptotically stable respectively when the threshold number and when .
基金National Natural Science Foundation of China(No.61374044)Shanghai Municipal Science and Technology Commission,China(No.15510722100)+2 种基金Shanghai Municipal Education Commission,China(No.14ZZ088)Shanghai Talent Development Plan,ChinaShanghai Baoshan Science and Technology Commission,China(No.bkw2013120)
文摘A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.
文摘Present paper deals a M/M/1:(∞;GD) queueing model with interdependent controllable arrival and service rates where- in customers arrive in the system according to poisson distribution with two different arrivals rates-slower and faster as per controllable arrival policy. Keeping in view the general trend of interdependent arrival and service processes, it is presumed that random variables of arrival and service processes follow a bivariate poisson distribution and the server provides his services under general discipline of service rule in an infinitely large waiting space. In this paper, our central attention is to explore the probability generating functions using Rouche’s theorem in both cases of slower and faster arrival rates of the queueing model taken into consideration;which may be helpful for mathematicians and researchers for establishing significant performance measures of the model. Moreover, for the purpose of high-lighting the application aspect of our investigated result, very recently Maurya [1] has derived successfully the expected busy periods of the server in both cases of slower and faster arrival rates, which have also been presented by the end of this paper.