A specially developed ultrasonic measurement apparatus (UMA) was used to in situ monitor the setting process of fly ash blended cement paste. Combined with the results of Vicat Needle tests, isothermal calorimetric me...A specially developed ultrasonic measurement apparatus (UMA) was used to in situ monitor the setting process of fly ash blended cement paste. Combined with the results of Vicat Needle tests, isothermal calorimetric measurement, XRD analysis, SEM morphology and compressive test, the influence of curing temperature (20, 40, 60, and 90 ℃) and fly ash content (0,10%, 20% and 30%) on the setting and hydration process of fly ash blended cement paste was analyzed. The results show that setting and hardening process of fly ash blended cement paste at elevated temperature can be clearly identified into three stages including dormant stage, acceleration stage and deceleration stage. The increasing of curing temperature greatly accelerates the setting and hardening process. However, the content of fly ash does not have significant effect on the setting in condition of 90 ℃. Besides, the initial and final setting time of cement paste is correspondent with the time of duration of dormant stage and the time of UPV value is 1500 m/s (T1500), respectively. Thus, the UMA can be used to determine the initial and final setting time of cementitious material under different curing temperatures. The compressive test results indicate that the paste with 20% fly ash presents higher compressive strength than the plain paste at curing temperatures of 90 ℃. Therefore, appropriate amount of fly ash is beneficial for concrete in the high temperature curing conditions.展开更多
Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of fill...Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.展开更多
Effects of the aging temperature on the hardening response, the tensile properties and the precipitate micro- structure evolution of 1460 alloy were studied in this work. It was found that Al3 (Sc, Zr) and δ′ (Al...Effects of the aging temperature on the hardening response, the tensile properties and the precipitate micro- structure evolution of 1460 alloy were studied in this work. It was found that Al3 (Sc, Zr) and δ′ (Al3Li) phases were precipitated from the matrix at the very early aging stage, while the precipitation of T1 (Al2CuLi) and θ′ (Al2Cu) was much slower than that of the δ′ phase. When aging at higher temperature (160 and 190 ℃), the δ′, T1 and θ′ phases tended to form simultaneously and grow up very quickly. Conversely, the δ′ and θ″ (Al2Cu) phases were precipitated separately and more dispersive at lower aging temperature (130 ℃). Taken together, the alloy aged at 160 ℃ exhibited improved mechanical properties owing to the uniform dispersion of the fine T1 precipitates.展开更多
基金Funded by the National Natural Science Foundation of China (Nos.51678309,51978339)973 Program (No.2015CB655102)+4 种基金Natural Science Foundation of Jiangsu Province of China (No.BK20161529)China Postdoctoral Science Foundation (No.2016M600351)Jiangsu Province Postdoctoral Science Foundation (No.1601028B)State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology)Priority Academic Program Development Jiangsu Higher Education Institutions (PDPA)
文摘A specially developed ultrasonic measurement apparatus (UMA) was used to in situ monitor the setting process of fly ash blended cement paste. Combined with the results of Vicat Needle tests, isothermal calorimetric measurement, XRD analysis, SEM morphology and compressive test, the influence of curing temperature (20, 40, 60, and 90 ℃) and fly ash content (0,10%, 20% and 30%) on the setting and hydration process of fly ash blended cement paste was analyzed. The results show that setting and hardening process of fly ash blended cement paste at elevated temperature can be clearly identified into three stages including dormant stage, acceleration stage and deceleration stage. The increasing of curing temperature greatly accelerates the setting and hardening process. However, the content of fly ash does not have significant effect on the setting in condition of 90 ℃. Besides, the initial and final setting time of cement paste is correspondent with the time of duration of dormant stage and the time of UPV value is 1500 m/s (T1500), respectively. Thus, the UMA can be used to determine the initial and final setting time of cementitious material under different curing temperatures. The compressive test results indicate that the paste with 20% fly ash presents higher compressive strength than the plain paste at curing temperatures of 90 ℃. Therefore, appropriate amount of fly ash is beneficial for concrete in the high temperature curing conditions.
基金The authors would like to acknowledge National Facility for Texture and OIM(A DST-IRPHA project),IIT Mumbai for XRD and EBSD measurements.One of the authors VDH would like to acknowledge Science and Engineering Research Board(SERB)for financial assistance(EEQ/2016/000422)to carry out project work.
文摘Friction stir processing and post process artificial ageing was successfully carried out on AA7075 with and without reinforcement of SiC particles producing defect free processed zone with uniform distribution of filler material.Effect of SiC particle reinforcement and artificial ageing times on the microstructural modifications was characterized using optical and electron microscopy,electron backscattered diffraction and X-Ray diffraction.Hardness,impact and wear tests were carried out to investigate mechanical behaviour before and after processing.Reinforcement of SiC particles during FSP and subsequent age hardening treatment brought about nearly twofold increase in hardness and impact toughness values by the combined effect of grain refinement,Zener pinning,dispersion strengthening and precipitation hardening.Significant improvement in wear resistance in terms of wear loss was also observed after processing compared to the reference material AA7075-T6.Fractured surface of post FSP age hardened AA7075 alloy exhibited features of ductile fracture during Charpy impact test.
文摘Effects of the aging temperature on the hardening response, the tensile properties and the precipitate micro- structure evolution of 1460 alloy were studied in this work. It was found that Al3 (Sc, Zr) and δ′ (Al3Li) phases were precipitated from the matrix at the very early aging stage, while the precipitation of T1 (Al2CuLi) and θ′ (Al2Cu) was much slower than that of the δ′ phase. When aging at higher temperature (160 and 190 ℃), the δ′, T1 and θ′ phases tended to form simultaneously and grow up very quickly. Conversely, the δ′ and θ″ (Al2Cu) phases were precipitated separately and more dispersive at lower aging temperature (130 ℃). Taken together, the alloy aged at 160 ℃ exhibited improved mechanical properties owing to the uniform dispersion of the fine T1 precipitates.