High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this excit...High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phasepure crystalline tetragonal MAPbI;perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO;/MAPbI;/Spiro-OMeTAD/Au achieve opencircuit voltage(990 mV) and short-circuit current density(20.31 mA/cm;) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current–voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMe TAD species, resulting in high seriesresistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs.展开更多
The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with...The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with bending and expanding happens in the process of hole flanging. The diameter of pre-hole of the workpiece is one of the key parameters in the process of hole flanging. The optimal diameter is obtained for reverse-conical hole of average diameter 40 mm by simulation of hole flanging process on 5 pre-holes with different diameters and 3 pre-holes with different shapes. The results can provide the scientific base for engineering application of the process.展开更多
A reliable method non-destructive X-ray test of wood defects with computer digital image processing technique was presented in the paper which made the knot-hole in wood clear and easily recognized. It was the first t...A reliable method non-destructive X-ray test of wood defects with computer digital image processing technique was presented in the paper which made the knot-hole in wood clear and easily recognized. It was the first time to use maximtun entropy to determine the threshold of binary picture and thc result was satisfying. The improved Robert was used in the paper in the paper to outline the knot-hole so that the processing was almost on real time.展开更多
With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of res...With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.展开更多
煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对...煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。展开更多
文摘High-efficiency perovskite solar cells(PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phasepure crystalline tetragonal MAPbI;perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO;/MAPbI;/Spiro-OMeTAD/Au achieve opencircuit voltage(990 mV) and short-circuit current density(20.31 mA/cm;) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current–voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMe TAD species, resulting in high seriesresistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs.
文摘The forming mechanism of hole flanging on a thick-wall heavy cylinder forging is simulated by DEFORM3D. The cylinder is 4 390 mm in diameter and 390 mm in thickness. The results show that the compound deformation with bending and expanding happens in the process of hole flanging. The diameter of pre-hole of the workpiece is one of the key parameters in the process of hole flanging. The optimal diameter is obtained for reverse-conical hole of average diameter 40 mm by simulation of hole flanging process on 5 pre-holes with different diameters and 3 pre-holes with different shapes. The results can provide the scientific base for engineering application of the process.
文摘A reliable method non-destructive X-ray test of wood defects with computer digital image processing technique was presented in the paper which made the knot-hole in wood clear and easily recognized. It was the first time to use maximtun entropy to determine the threshold of binary picture and thc result was satisfying. The improved Robert was used in the paper in the paper to outline the knot-hole so that the processing was almost on real time.
基金Science Foundation of China University of Petroleum, Beijing (No.YJRC-2011-02)for the financial support during this research
文摘With permanent down-hole gauges (PDGs) widely installed in oilfields around the world in recent years, a continuous stream of transient pressure data in real time is now available, which motivates a new round of research interests in further developing pressure transient processing and analysis techniques. Transient pressure measurements from PDG are characterized by long term and high volume data. These data are recorded under unconstrained circumstances, so effects due to noise, rate fluctuation and interference from other wells cannot be avoided. These effects make the measured pressure trends decline or rise and then obscure or distort the actual flow behavior, which makes subsequent analysis difficult. In this paper, the problems encountered in analysis of PDG transient pressure are investigated. A newly developed workflow for processing and analyzing PDG transient pressure data is proposed. Numerical well testing synthetic studies are performed to demonstrate these procedures. The results prove that this new technique works well and the potential for practical application looks very promising.
文摘煤矿掘进巷道锚护位置的精准识别与定位是钻锚机器人实现智能永久支护亟需突破的关键技术。笔者提出一种基于视觉图像与激光点云融合的巷道锚护孔位智能识别定位方法,包括图像目标识别、点云图像特征融合和定位坐标提取3个步骤:①针对煤矿井下低照度、水雾和粉尘等环境因素导致的锚孔轮廓成像模糊的问题,采用IA(Image-Adaptive)-SimAM-YOLOv7-tiny网络对巷道待锚护孔位进行视觉识别,该网络能够自适应地增强图像亮度和对比度,恢复锚孔边缘的高频信息,并使模型重点关注锚孔特征,提高锚孔检测的成功率;②求解激光雷达和工业相机联合标定的外参矩阵,将图像检测的锚孔边界框通过透视投影关系生成锥形感兴趣区域(Region Of Interest,ROI),获得对应的目标点云团簇;③采用点云处理算法提取锚护孔位边界点云,获得孔位中心坐标及其法向量,并通过坐标深度差比较判断锚孔识别的正确性。文中搭建了锚杆台车机械臂钻孔定位系统,对算法自主定位的精度以及准确度进行验证,试验结果表明:IA-SimAM-YOLOv7-tiny模型的平均精度均值(Mean Average Precision,mAP)为87.3%,较YOLOv7-tiny模型提高了4.6%;提出的融合算法定位误差为3 mm,单锚孔情况下系统平均识别时间为0.77 s,与单一视觉方法相比,采用激光与视觉多源融合不仅可以降低环境和小样本训练对定位性能的影响,而且可以获得锚护孔位的法向量,为机械臂调整钻孔位姿实现精准锚固提供依据。