With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduce...With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals...Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.展开更多
A digital still camera image processing system on a chip, different from the video camera system, is pre- sented for mobile phone to reduce the power consumption and size. A new color interpolation algorithm is propos...A digital still camera image processing system on a chip, different from the video camera system, is pre- sented for mobile phone to reduce the power consumption and size. A new color interpolation algorithm is proposed to enhance the image quality. The system can also process fixed patten noise (FPN) reduction, color correction, gamma correction, RGB/YUV space transfer, etc. The chip is controlled by sensor regis- ters by inter-integrated circuit (I2C) interface. The voltage for both the front-end analog and the pad cir- cuits is 2.8 V, and the volatge for the image signal processing is 1.8 V. The chip running under the external 13.5-MHz clock has a video data rate of 30 frames/s and the measured power dissipation is about 75 roW.展开更多
Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c...Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.展开更多
Semiconductor fabrication is a manufacturing sequence with hundreds of sophisticated unit operations and it is always challenged by strategy development for ensuring the yield of defect-free products.In this paper,an ...Semiconductor fabrication is a manufacturing sequence with hundreds of sophisticated unit operations and it is always challenged by strategy development for ensuring the yield of defect-free products.In this paper,an advanced control strategy through integrating product and process control is established.The proposed multiscale scheme contains three layers for coordinated equipment control,process control and product quality control.In the upper layer,online control performance assessment is applied to reduce the quality variation and maximize the overall product performance (OPP).It serves as supervisory control to update the recipe of the process controller in the middle layer.The process controller is designed as an exponentially weighted moving average (EWMA) run-to-run controller to reject disturbances,such as process shift,drift and tool worn out,that are exerted to the op-eration.The equipment in the process is individually controlled to maintain its optimal operational status and maximize the overall equipment effectiveness (OEE),based on the set point given by the process controller.The ef-ficacy of the proposed integrated control scheme is demonstrated through case studies,where both the OPP (for product) and the OEE (for equipment) are enhanced.展开更多
The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption i...The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.展开更多
Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r ...Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".展开更多
Cities are facing challenges of high rise in population number and con-sequently need to be equipped with latest smart services to provide luxuries of life to its residents.Smart integrated solutions are also a need t...Cities are facing challenges of high rise in population number and con-sequently need to be equipped with latest smart services to provide luxuries of life to its residents.Smart integrated solutions are also a need to deal with the social and environmental challenges,caused by increasing urbanization.Currently,the development of smart services’integrated network,within a city,is facing the bar-riers including;less efficient collection and sharing of data,along with inadequate collaboration of software and hardware.Aiming to resolve these issues,this paper recommended a solution for a synchronous functionality in the smart services’integration process through modeling technique.Using this integration modeling solution,atfirst,the service participants,processes and tasks of smart services are identified and then standard illustrations are developed for the better understand-ing of the integrated service group environment.Business process modeling and notation(BPMN)language based models are developed and discussed for a devised case study,to test and experiment i.e.,for remote healthcare from a smart home.The research is concluded with the integration process model application for the required data sharing among different service groups.The outcomes of the modeling are better understanding and attaining maximum automation that can be referenced and replicated.展开更多
Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the...Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current production field. However,when performing this integrated optimization,the uncertainty of processing time is a realistic key point that cannot be neglected. Thus,this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize the maximum fuzzy completion time. Compared with the conventional IPPS problem,FIPPS considers the fuzzy process time in the uncertain production environment,which is more practical and realistic. However,it is difficult to solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem,this paper formulates a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms evolve in various directions and collaborate in a certain number of iterations. Moreover,the critical path searching method is introduced according to the triangular fuzzy number,allowing for the calculation of rules to enhance the local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms,the results obtained by MSCOA show significant advantages,thus proving its effectiveness in solving the FIPPS problem.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides ...By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.展开更多
Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (...Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of展开更多
For several superior controllers of the first-order integrating processes with long delay, the windup problems are analyzed in detail when the control signal saturates. The results show that these controllers have sim...For several superior controllers of the first-order integrating processes with long delay, the windup problems are analyzed in detail when the control signal saturates. The results show that these controllers have similar characteristics about the process input limitation. And then, a simple and effective anti-windup scheme, without an additional parameter, is designed for these controllers. Simulations run with three main controllers, and the results illustrate that the proposed method may achieve good performance under the nominal and model uncertainty cases.展开更多
For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme,...For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of ...The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.展开更多
This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of...This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.展开更多
The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is tra...The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.展开更多
基金supported by The National High Technology Research and Development Program of China (2009AA044701)
文摘With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
文摘Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.
基金supported by the National"863"Program of China under Grant No.2008AA01Z130
文摘A digital still camera image processing system on a chip, different from the video camera system, is pre- sented for mobile phone to reduce the power consumption and size. A new color interpolation algorithm is proposed to enhance the image quality. The system can also process fixed patten noise (FPN) reduction, color correction, gamma correction, RGB/YUV space transfer, etc. The chip is controlled by sensor regis- ters by inter-integrated circuit (I2C) interface. The voltage for both the front-end analog and the pad cir- cuits is 2.8 V, and the volatge for the image signal processing is 1.8 V. The chip running under the external 13.5-MHz clock has a video data rate of 30 frames/s and the measured power dissipation is about 75 roW.
基金the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)the National Natural Science Foundation of China(20776089)
文摘Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.
文摘Semiconductor fabrication is a manufacturing sequence with hundreds of sophisticated unit operations and it is always challenged by strategy development for ensuring the yield of defect-free products.In this paper,an advanced control strategy through integrating product and process control is established.The proposed multiscale scheme contains three layers for coordinated equipment control,process control and product quality control.In the upper layer,online control performance assessment is applied to reduce the quality variation and maximize the overall product performance (OPP).It serves as supervisory control to update the recipe of the process controller in the middle layer.The process controller is designed as an exponentially weighted moving average (EWMA) run-to-run controller to reject disturbances,such as process shift,drift and tool worn out,that are exerted to the op-eration.The equipment in the process is individually controlled to maintain its optimal operational status and maximize the overall equipment effectiveness (OEE),based on the set point given by the process controller.The ef-ficacy of the proposed integrated control scheme is demonstrated through case studies,where both the OPP (for product) and the OEE (for equipment) are enhanced.
文摘The study is focused on modeling of separation process and optimization.An adsorption separation process is simulated.The surfactin production process by Bacillus subtilis ATCC 21332 followed by surfactin adsorption in a fixed-bed column packed with commercial active carbon is studied in laboratory.The adsorption column achieves high surfactin recovery(94%)by up-flow methanol elution at 25°C.The adsorption column is simulated with a complex one-dimensional plug flow dispersion model coupled with nonlinear adsorption equilibrium,based on the assumption that the adsorption of surfactin is monomolecular layer and no micelle is formed.The molecular diffusion coefficient of surfactin in water solution with electric neutrality is estimated to be 0.428×10 -5 cm 2 ·s -1 by molecular dynamics simulation.The model developed can describe the complex interplay of adsorption kinetics,fluid dynamics,and mass-transfer phenomena based on the assumption of no radial temperature and concentration gradients,and is of adequate precision.The work involved in this paper is valuable for the optimization of the production process of surfactin.
文摘Process planning and scheduling are two major plann in g and control activities that consume significant part of the lead-time, theref ore all attempts are being made to reduce lead-time by automating them. Compute r Aided Process Planning (CAPP) is a step in this direction. Most of the existin g CAPP systems do not consider scheduling while generating a process plan. Sched uling is done separately after the process plan has been generated and therefore , it is possible that a process plan so generated is either not optimal or feasi ble from scheduling point of view. As process plans are generated without consid eration of job shop status, many problems arise within the manufacturing environ ment. Investigations have shown that 20%~30% of all process plans generated are not valid and have to be altered or suffer production delays when production sta rts. There is thus a major need for integration of scheduling with computer aide d process planning for generating more realistic process plans. In doing so, eff iciency of the manufacturing system as a whole is expected to improve. Decision support system performs many functions such as selection of machine too ls, cutting tools, sequencing of operations, determination of optimum cutting pa rameters and checking availability of machine tool before allocating any operati on to a machine tool. The process of transforming component data, process capabi lity and decision rules into computer readable format is still a major obstacle. This paper proposes architecture of a system, which integrates computer aided p rocess-planning system with scheduling using decision support system. A decisio n support system can be defined as " an interactive system that provides the use rs with easy access to decision models in order to support semi-structured or u nstructured decision making tasks".
文摘Cities are facing challenges of high rise in population number and con-sequently need to be equipped with latest smart services to provide luxuries of life to its residents.Smart integrated solutions are also a need to deal with the social and environmental challenges,caused by increasing urbanization.Currently,the development of smart services’integrated network,within a city,is facing the bar-riers including;less efficient collection and sharing of data,along with inadequate collaboration of software and hardware.Aiming to resolve these issues,this paper recommended a solution for a synchronous functionality in the smart services’integration process through modeling technique.Using this integration modeling solution,atfirst,the service participants,processes and tasks of smart services are identified and then standard illustrations are developed for the better understand-ing of the integrated service group environment.Business process modeling and notation(BPMN)language based models are developed and discussed for a devised case study,to test and experiment i.e.,for remote healthcare from a smart home.The research is concluded with the integration process model application for the required data sharing among different service groups.The outcomes of the modeling are better understanding and attaining maximum automation that can be referenced and replicated.
文摘Considering both process planning and shop scheduling in manufacturing can fully utilize their complementarities,resulting in improved rationality of process routes and high-quality and efficient production. Hence,the study of Integrated Process Planning and Scheduling (IPPS) has become a hot topic in the current production field. However,when performing this integrated optimization,the uncertainty of processing time is a realistic key point that cannot be neglected. Thus,this paper investigates a Fuzzy IPPS (FIPPS) problem to minimize the maximum fuzzy completion time. Compared with the conventional IPPS problem,FIPPS considers the fuzzy process time in the uncertain production environment,which is more practical and realistic. However,it is difficult to solve the FIPPS problem due to the complicated fuzzy calculating rules. To solve this problem,this paper formulates a novel fuzzy mathematical model based on the process network graph and proposes a MultiSwarm Collaborative Optimization Algorithm (MSCOA) with an integrated encoding method to improve the optimization. Different swarms evolve in various directions and collaborate in a certain number of iterations. Moreover,the critical path searching method is introduced according to the triangular fuzzy number,allowing for the calculation of rules to enhance the local searching ability of MSCOA. The numerical experiments extended from the well-known Kim benchmark are conducted to test the performance of the proposed MSCOA. Compared with other competitive algorithms,the results obtained by MSCOA show significant advantages,thus proving its effectiveness in solving the FIPPS problem.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
文摘By avoiding or reducing the production of waste, waste minimization is an effective approach to solve the pollution problem in chemical industry. Process integration supported by multi-objective optimization provides a framework for process design or process retrofit by simultaneously optimizing on the aspects of environment and economics. Multi-objective genetic algorithm is applied in this area as the solution approach for the multi-objective optimization problem.
文摘Integrator processes with long delay are difficult to control. Nonlinear characteristics of actuators make the control problem more challenging. A technique is proposed in this paper for global satisfactory control (GSC) of such processes with relay-type nonlinearity. An oscillatory control signal is injected into the nonlinear process; the amplitude and frequency of the oscillatory signal are designed to linearise the nonlinear process in the sense of harmonic analysis; and a state feedback controller is configured to implement GSC over the linearised process. An illustrative example is given to demonstrate the effectiveness of
基金the National "863" High Technology Development Program(2001AA413130).
文摘For several superior controllers of the first-order integrating processes with long delay, the windup problems are analyzed in detail when the control signal saturates. The results show that these controllers have similar characteristics about the process input limitation. And then, a simple and effective anti-windup scheme, without an additional parameter, is designed for these controllers. Simulations run with three main controllers, and the results illustrate that the proposed method may achieve good performance under the nominal and model uncertainty cases.
文摘For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
基金This work was supported by National Science Fundation of China (No.60274032)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (No.20030248040)and Alexander von Humboldt Research Fellowship
文摘The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significandy reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.
文摘This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.
文摘The Dynamic Matrix Control (DMC) algorithm tor integral processes is investigated in this paper. The reason why the original DMC algorithm cannot be applied to these processes is analyzed. The shifting matrix is transformed into another form and the corresponding theorem is proved, then its applicable range is extended. Compared with other algorithms on the integral processes, this algorithm is more practical and simple to implement. Simulation results also prove its validity. Applying this algorithm, we succeed in the control of the boiler level system in power units.