The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping...The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping hydrocarbons from reservoirs to the surface, which made it difficult to understand the features and pathways of deep hydrocarbon microseepages. Understanding the processes of hydrocarbon microseepages will contribute to the acceptance and effectiveness of surface geochemistry. Based on a simplified geological model of hydrocarbon microseepages, including hydrocarbon reservoir, direct caprock, overlying strata and Quaternary sediments, this work established a 3D experimental system to simulate the mechanisms and processes of deep hydrocarbon microseepes extending to the surface. The dispersive halos of microseeping hydrocarbons in the subsurface were adequately described by using this 3D experimental system. Results indicate that different migration patterns of hydrocarbons above the point gas source within the simulated caprock and overlying strata can be reflected by the ratio of i-butane to n-butane (i-C4/n-C4), which follow diffusion and infiltration (buoyancy) mechanisms. This is not the case for vertical measurement lines far from the point gas source. A vertical gas flow in the form of a plume was found during hydrocarbon microseepage. For sampling methods, the high-density grid sampling is favorable for delineating prospecting targets. Hydrocarbon infiltration or buoyancy flow occurs in the zones of infiltration clusters, coupling with a diffusion mechanism at the top of the water table and forming surface geochemical anomalies. These results are significant in understanding hydrocarbon microseepage and interpreting SGE data.展开更多
1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simul...1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt展开更多
1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoratio...1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoration of rivers through the展开更多
Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple faul...Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.展开更多
We consider a modified Markov branching process incorporating with both state-independent immigration-migration and resurrection. The effect of state-independent immigration-migration is firstly in- vestigated in deta...We consider a modified Markov branching process incorporating with both state-independent immigration-migration and resurrection. The effect of state-independent immigration-migration is firstly in- vestigated in detail. The explicit expressions for the extinction probabilities and mean extinction times are presented. The ergodicity and stability properties of the process incorporating with resurrection structure are then investigated. The conditions for recurrence, ergodicity and exponential ergodicity are obtained. An explicit expression for the equilibrium distribution is also presented. As a preparation, the criteria for regularity and uniqueness for such structure are firstly established.展开更多
基金supported by the National Natural Science Foundation of China(grants No.41373121 and 41072099)the scientific and technological project of SINOPEC under Contract No.P05069Support by SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms,China
文摘The formation mechanisms and processes of geochemical anomalies used as proxies in surface geochemistry exploration (SGE) have not been well understood. Previous studies cannot realize 3D measurement of microseeping hydrocarbons from reservoirs to the surface, which made it difficult to understand the features and pathways of deep hydrocarbon microseepages. Understanding the processes of hydrocarbon microseepages will contribute to the acceptance and effectiveness of surface geochemistry. Based on a simplified geological model of hydrocarbon microseepages, including hydrocarbon reservoir, direct caprock, overlying strata and Quaternary sediments, this work established a 3D experimental system to simulate the mechanisms and processes of deep hydrocarbon microseepes extending to the surface. The dispersive halos of microseeping hydrocarbons in the subsurface were adequately described by using this 3D experimental system. Results indicate that different migration patterns of hydrocarbons above the point gas source within the simulated caprock and overlying strata can be reflected by the ratio of i-butane to n-butane (i-C4/n-C4), which follow diffusion and infiltration (buoyancy) mechanisms. This is not the case for vertical measurement lines far from the point gas source. A vertical gas flow in the form of a plume was found during hydrocarbon microseepage. For sampling methods, the high-density grid sampling is favorable for delineating prospecting targets. Hydrocarbon infiltration or buoyancy flow occurs in the zones of infiltration clusters, coupling with a diffusion mechanism at the top of the water table and forming surface geochemical anomalies. These results are significant in understanding hydrocarbon microseepage and interpreting SGE data.
基金supported by China Geological Survey Bureau potash resources investigation and evaluation project (1212011085524)NSFC projects (40872134, 41272227 )
文摘1 Introduction Physical and numerical models are constructed to investigate the evolution and mechanism of salt migration driven by tectonic processes.In recent years,we have designed and ran series of models to simulate salt
基金supported by National Natural Sciences Fund (No. 41372125)Fund of Ministry of Education of Hubei Province (No. Q20121210)
文摘1 Introduction Morphological analysis on the planform migration structure of meandering river is an important basis for the reconstruction of evolution of paleochannel.Besides,it is a significant method for restoration of rivers through the
基金The National Science and Technology Major Project of the Ministry of Science and Technology of China under contract No.2016ZX05024-002
文摘Through the analysis of the faults and their internal structure in Zhu I Depression,it is found that the internal structure of the late fault is obviously segmented vertically.It develops unitary structure(simple fault plane)in shallow layers,binary structure(induced fracture zone in hanging wall and sliding fracture zone in footwall)in middle,layers and ternary structure(induced fracture zone in hanging wall and sliding fracture zone in middle,and induced fracture zone in footwall)in deep layers.Because the induced fracture zone is a high porosity and permeability zone,and the sliding fracture zone is a low porosity and ultra-low permeability zone,the late fault in middle layers has the character of"transporting while sealing".The late fault can transport hydrocarbon by its induced fracture zone in the side of the hanging wall and seal hydrocarbon by its sliding fracture zone in the side of the footwall.In deep layers,the late fault has the character of"dual-transportation",induced fracture zones in both sides of hanging wall and footwall can transport hydrocarbon.The early fault that only developed in the deep layers is presumed to be unitary structure,which plays a completely sealing role in the process of hydrocarbon migration and accumulation due to inactivity during the hydrocarbon filling period.Controlled by hydrocarbon source,early/late faults,sand bodies and traps,two reservoir-forming models of"inverted L"and"stereo-spiral"can be proposed in middle layers,while two reservoir-forming models of"cross fault"and"lateral fault sealing"are developed in the deep layers of Zhu I Depression.
基金supported by National Natural Science Foundations of China (Grant Nos. 10771216 and 11071259)
文摘We consider a modified Markov branching process incorporating with both state-independent immigration-migration and resurrection. The effect of state-independent immigration-migration is firstly in- vestigated in detail. The explicit expressions for the extinction probabilities and mean extinction times are presented. The ergodicity and stability properties of the process incorporating with resurrection structure are then investigated. The conditions for recurrence, ergodicity and exponential ergodicity are obtained. An explicit expression for the equilibrium distribution is also presented. As a preparation, the criteria for regularity and uniqueness for such structure are firstly established.