Watershed is considered to be the ideal unit for management of the natural resources. Extraction of water-shed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models i...Watershed is considered to be the ideal unit for management of the natural resources. Extraction of water-shed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models is the current trend for hydrologic evaluation of watersheds. The Soil and Water Assessment Tool (SWAT) having an interface with ArcView GIS software (AVSWAT2000/X) was selected for the estimation of runoff and sediment yield from an area of Suni to Kasol, an intermediate watershed of Satluj river, located in Western Himalayan region. The model was calibrated for the years 1993 & 1994 and validated with the observed runoff and sediment yield for the years 1995, 1996 and 1997. The performance of the model was evaluated using statistical and graphical methods to assess the capability of the model in simulating the run-off and sediment yield from the study area. The coefficient of determination (R2) for the daily and monthly runoff was obtained as 0.53 and 0.90 respectively for the calibration period and 0.33 and 0.62 respectively for the validation period. The R2 value in estimating the daily and monthly sediment yield during calibration was computed as 0.33 and 0.38 respectively. The R2 for daily and monthly sediment yield values for 1995 to 1997 was observed to be 0.26 and 0.47.展开更多
Hydraulic erosion associated with seasonal freeze-thaw cycles is one of the most predominant factors,which drives soil stripping and transportation.In this study,indoor simulated meltwater erosion experiments were use...Hydraulic erosion associated with seasonal freeze-thaw cycles is one of the most predominant factors,which drives soil stripping and transportation.In this study,indoor simulated meltwater erosion experiments were used to investigate the sorting characteristics and transport mechanism of sediment particles under different freeze-thaw conditions(unfrozen,shallow-thawed,and frozen slopes)and runoff rates(1,2,and 4 L/min).Results showed that the order of sediment particle contents was silt>sand>clay during erosion process on unfrozen,shallow-thawed,and frozen slopes.Compared with original soils,clay and silt were lost,and sand was deposited.On unfrozen and shallow-thawed slopes,the change of runoff rate had a significant impact on the enrichment of clay,silt,and sand particles.In this study,the sediment particles transported in the form of suspension/saltation were 83.58%–86.54%on unfrozen slopes,69.24%–84.89%on shallow-thawed slopes,and 83.75%–87.44%on frozen slopes.Moreover,sediment particles smaller than 0.027 mm were preferentially transported.On shallow-thawed slope,relative contribution percentage of suspension/saltation sediment particles gradually increased with the increase in runoff rate,and an opposite trend occurred on unfrozen and frozen slopes.At the same runoff rate,freeze-thaw process had a significant impact on the relative contribution percentage of sediment particle transport via suspension/saltation and rolling during erosion process.The research results provide an improved transport mechanism under freeze-thaw condition for steep loessal slopes.展开更多
Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical...Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.展开更多
文摘Watershed is considered to be the ideal unit for management of the natural resources. Extraction of water-shed parameters using Remote Sensing and Geographical Information System (GIS) and use of mathematical models is the current trend for hydrologic evaluation of watersheds. The Soil and Water Assessment Tool (SWAT) having an interface with ArcView GIS software (AVSWAT2000/X) was selected for the estimation of runoff and sediment yield from an area of Suni to Kasol, an intermediate watershed of Satluj river, located in Western Himalayan region. The model was calibrated for the years 1993 & 1994 and validated with the observed runoff and sediment yield for the years 1995, 1996 and 1997. The performance of the model was evaluated using statistical and graphical methods to assess the capability of the model in simulating the run-off and sediment yield from the study area. The coefficient of determination (R2) for the daily and monthly runoff was obtained as 0.53 and 0.90 respectively for the calibration period and 0.33 and 0.62 respectively for the validation period. The R2 value in estimating the daily and monthly sediment yield during calibration was computed as 0.33 and 0.38 respectively. The R2 for daily and monthly sediment yield values for 1995 to 1997 was observed to be 0.26 and 0.47.
基金funded by the National Natural Science Foundation of China(U2040208,52009104,52079106,42107087)the Shaanxi Province Innovation Talent Promotion Plan Project Technology Innovation Team(2020TD-023)。
文摘Hydraulic erosion associated with seasonal freeze-thaw cycles is one of the most predominant factors,which drives soil stripping and transportation.In this study,indoor simulated meltwater erosion experiments were used to investigate the sorting characteristics and transport mechanism of sediment particles under different freeze-thaw conditions(unfrozen,shallow-thawed,and frozen slopes)and runoff rates(1,2,and 4 L/min).Results showed that the order of sediment particle contents was silt>sand>clay during erosion process on unfrozen,shallow-thawed,and frozen slopes.Compared with original soils,clay and silt were lost,and sand was deposited.On unfrozen and shallow-thawed slopes,the change of runoff rate had a significant impact on the enrichment of clay,silt,and sand particles.In this study,the sediment particles transported in the form of suspension/saltation were 83.58%–86.54%on unfrozen slopes,69.24%–84.89%on shallow-thawed slopes,and 83.75%–87.44%on frozen slopes.Moreover,sediment particles smaller than 0.027 mm were preferentially transported.On shallow-thawed slope,relative contribution percentage of suspension/saltation sediment particles gradually increased with the increase in runoff rate,and an opposite trend occurred on unfrozen and frozen slopes.At the same runoff rate,freeze-thaw process had a significant impact on the relative contribution percentage of sediment particle transport via suspension/saltation and rolling during erosion process.The research results provide an improved transport mechanism under freeze-thaw condition for steep loessal slopes.
基金financially supported by National Natural Science Foundation of China (Grant Nos. 41172283, 41372313)National Basic Research Program of China (2012CB026103)
文摘Gravelly soils are made up of gravel, sand, silt and clay. They are widely used in engineering applications such as rock-fill dams with clay cores, which are the main researches at present. The strength and mechanical properties of the gravelly soils are affected by the content of coarse grain, fine particles, and their adhesive states. These Properties can be verified by laboratory unconsolidated undrained triaxial tests with grain size less than 5 mm and by large scale direct-shear tests with original grain content. Fine particles of the loose gravelly slopes are released under rainfalls, alternated the structures and mechanical properties, even affected the slope stability. There are a series of large scale direct-shear tests with different coarse grain contents to study the influence of fine particles releasing and migration, results showed the strength behavior of the gravelly soils were affected by the coarse grain content (5) and the inflection coarse grain contents. In order to study the erosion features of the gravelly soil slopes on rainfall conditions and the slopes stability alteration, we had carried out one sort of artificial rainfall local and model experiments, the runoff sediment contents were monitored during the experiments. Result showed that the shapes of the slopes surface transformed periodically, runoff sediment contents were divided into five phases according to the experiment phenomena, runoff sediment contents maintained downtrend during the rain time and the downtrend was obviouslyinterpreted by one descend belt no matter the rainfall intensity and the slope angels. Particle size analysis released the deposit on the slope surface lost almost all of the clay, most of the silt and sand after the experiments, this meant the fine particles releasing, migration and accumulation process on condition of rainfall resulted in the instability factor of the slopes even induced landslide or debris flow.