The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduce...Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.展开更多
Single step and multi step CARE processes are optimized by computer simulations based on the mathematical model proposed previously. The product of purification factor and recovery yield is used as the objective fun...Single step and multi step CARE processes are optimized by computer simulations based on the mathematical model proposed previously. The product of purification factor and recovery yield is used as the objective function for optimizing a single step process. The objective function for the optimization of a multi step process is considered to obtain an anticipated product purity at a maximum recovery yield and a minimum number of CARE inividuals. Pairs of the operating conditions (eluant and affinity recycle flow rates) exist to give the maximums of above objective functions when membrane rejections to ligates and contaminants are equal in value. The optimum affinity recycle flow rate decreases with the increase of membrane rejections and equilibrium binding fractions of ligates. For a multi step process, when contaminants are rejected less than ligate, only one pair of the optimum eluant and affinity recycle flow rates exists.展开更多
Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the re...Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the red,green,and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays.Herein,we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer(BCL)which is deposited through a common mask over the entire sub-pixels.Benefitted from the optimized device structure,red and green QLEDs retained their color coordinates despite the presence of the BCL.Furthermore,adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4%and 11.7%,respectively,due to the Förster resonance energy transfer from the BCL to the adjacent QD layers.With the BCL structure,we could simply demonstrate a full-color QD-organic hybrid device in a single substrate.We believe that this device architecture is practically applicable for easier fabrication of solution-processed,highresolution,and full-color displays with reduced process steps.展开更多
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
文摘Evaluation on nitrogen removal of step-feed anoxic/oxic activated sludge process at the standpoint of reaction kinetics and process kinetics was conducted. Theoretical biological nitrogen removal efficiency was deduced based on the mass balance of nitrate in the last stage. The comparison of pre-denitrification process and step feed process in the aspects of nitrogen removal efficiency, volume of reactor and building investment was studied, and the results indicated that step-feed anoxic/oxic activated sludge process was superior to pre-denitrification process in these aspects.
文摘Single step and multi step CARE processes are optimized by computer simulations based on the mathematical model proposed previously. The product of purification factor and recovery yield is used as the objective function for optimizing a single step process. The objective function for the optimization of a multi step process is considered to obtain an anticipated product purity at a maximum recovery yield and a minimum number of CARE inividuals. Pairs of the operating conditions (eluant and affinity recycle flow rates) exist to give the maximums of above objective functions when membrane rejections to ligates and contaminants are equal in value. The optimum affinity recycle flow rate decreases with the increase of membrane rejections and equilibrium binding fractions of ligates. For a multi step process, when contaminants are rejected less than ligate, only one pair of the optimum eluant and affinity recycle flow rates exists.
基金supported by the Technology Innovation Program(Nos.20010371 and 20010737)the Industrial Core Technology Development Program(No.10077471)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Colloidal quantum-dot(QD)light-emitting diodes(QLEDs)have been in the forefront of future display devices due to their outstanding optoelectronic properties.However,a complicated solution-process for patterning the red,green,and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays.Herein,we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer(BCL)which is deposited through a common mask over the entire sub-pixels.Benefitted from the optimized device structure,red and green QLEDs retained their color coordinates despite the presence of the BCL.Furthermore,adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4%and 11.7%,respectively,due to the Förster resonance energy transfer from the BCL to the adjacent QD layers.With the BCL structure,we could simply demonstrate a full-color QD-organic hybrid device in a single substrate.We believe that this device architecture is practically applicable for easier fabrication of solution-processed,highresolution,and full-color displays with reduced process steps.