Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains...Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies.展开更多
Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT...Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.展开更多
ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.T...ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes ha...Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.展开更多
Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement da...Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.展开更多
A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape fac...A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.展开更多
In this study, with the method of vacuum extraction, two evaporative processes of soil water and free water under equilibrium condition were simulated. For each sample,water vapor was condensed by liquid nitrogen and ...In this study, with the method of vacuum extraction, two evaporative processes of soil water and free water under equilibrium condition were simulated. For each sample,water vapor was condensed by liquid nitrogen and was collected in four time intervals. From the analysis of hydrogen and oxygen isotopic compositions of the water collected at different times, it was discovered that the isotope fractionation of soil water also follows the mode, which is just the same as the evaporative process of free water. The relationship between the stable hydrogen and oxygen isotopes in residual water showed that the simulative evaporation line was close to the global meteoric water line (GMWL) under the equilibrium condition at about 20℃. Comparison of the two types of evaporative processes indicated that the isotope fractionation and evaporation velocity of soil water were only slightly modified by the Van der Waals force.展开更多
In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, fil...In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and in consequence optimize the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some practical solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).展开更多
Objective In this study, a pilot-scale investigation was conducted to examine and compare the biotoxicity of the organic compounds in effluents from five treatment processes (P1-P5) where each process was combination ...Objective In this study, a pilot-scale investigation was conducted to examine and compare the biotoxicity of the organic compounds in effluents from five treatment processes (P1-P5) where each process was combination of preoxidation (O3), coagulation, sedimentation, sand filtration, ozonation, granular activated carbon, biological activated carbon and chlorination (NaClO). Methods Organic compounds were extracted by XAD-2 resins and eluted with acetone and dichlormethane (DCM). The eluents were evaporated and redissolved with DMSO or DCM. The mutagenicity and estrogenicity of the extracts were assayed with the Ames test and yeast estrogen screen (YES assay), respectively. The organic compounds were detected by GC-MS. Results The results indicated that the mutation ratio (MR) of organic compounds in source water was higher than that for treated water. GC-MS showed that more than 48 organic compounds were identified in all samples and that treated water had significantly fewer types and concentrations of organic compounds than source water. Conclusion To different extents, all water treatment processes could reduce both the mutagenicity and estrogenicity, relative to source water. P2, P3, and P5 reduced mutagenicity more effectively, while P1 reduced estrogenicity, most effectively. Water treatment processes in this pilot plant had weak abilities to remove Di-n-butyl phthalate or 1, 2-Benzene dicarboxylic acid.展开更多
Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological s...Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological systems in arid areas.The spatial heterogeneity of soil water content is a major soil property,and a focus of soil science and hydrology.On the southern edge of the Tengger Desert,sample plots were selected from mobile sand dunes in desertified lands that had been enclosed for 5,15 and 25 years,respectively.This study explored the dynamic and spatial heterogeneity of soil water content in these different layers of soil that were also in the reversion process of desertification.The results showed that the soil water content of the mobile sand dunes was highest when in the initial stages of the reversion process of desertification,while the soil water content in the 0-20 cm,20-40 cm and 40-60 cm layers of soil was 1.769%,3.011%,and 2.967% respectively,presenting a restoring tendency after 25 years of enclosure.There were significant differences,as a whole,in the soil water content among different restoration stages and different soil layers,respectively.Changes in soil water content,in different soil layers,at different restoration stages,exhibited exponential or spherical patterns.The spatial distribution of soil water content exhibited a mosaic patch pattern with obvious spatial heterogeneity.The ratio of the heterogeneity of spatial autocorrelation to gross spatial heterogeneity was greater than 50%.The gross spatial heterogeneity of the 0-20 cm layer of soil improved gradually,while those of the 20-40 cm and 40-60 cm layers improved initially,then weakened in the reversion process of desertification.This study revealed that restoration with sand-binding vegetation reduced soil water content,and increased its spatial heterogeneity in arid areas.However,after 25 years of vegetation-soil system restoration,the soil water content started to increase and its spatial heterogeneity started to weaken.These results will further benefit the understanding of the ecological mechanism between soil water and sand-binding vegetation.展开更多
This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that th...This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.展开更多
A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the ...A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.展开更多
Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wa...Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,展开更多
The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality an...The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.展开更多
Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and ...Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.展开更多
The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water g...The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.展开更多
In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large num...In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.展开更多
基金Supported by Shanxi Scholarship Council of China (2015-123)the Natural Science Foundation of China (51602322)the Key Research and Development Program of Shanxi Province (International Cooperation) (201703D421041) for financial support
文摘Hydrothermal carbonization(HTC) is a valuable approach to convert furfural residue(FR) into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques(~1H and ^(13)C NMR,~1H-~1H COSY and ~1H-^(13)C HSQC etc.) especially 1D selective gradient total correlation spectroscopy(TOCSY NMR) were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions(180-240 ℃ at 8 h, and 1-24 h at 240 ℃) was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies.
文摘Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.
基金funded by the National Natural Science Foundation of China(Grant No.42071047 and 41771035)the Basic Research Innovation Group Project of Gansu Province(Grant No.22JR5RA129).
文摘ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
基金financially supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW- 330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)
文摘Gas hydrates formation and dissociation processes inside porous media are always accompanied by water transfer behavior, which is similar to the water behavior of ice freezing and thawing processes. These processes have been studied by many researchers, but all the studies are so far on the water transfer characteristics outside porous media and the water transfer characteristics inside porous media have been little known. In this study, in order to study the water transfer characteristics inside porous media during methane hydrate formation and dissociation processes, a novel apparatus with three pF-meter sensors which can detect water content changes inside porous media was applied. It was experimentally observed that methane hydrate formation processes were accompanied by water transfer from bottom to top inside porous media, however, the water behavior during hydrate dissociation processes was abnormal, for which more studies are needed to find out the real reason in our future work.
文摘Based on natural precipitation observations, impacts of different types of land use on processes of soil and water loss over purple soil related slopeland were studied by simulated rainfall experiments. Measurement data revealed that rainstorms and slope length are the essential factors accountable for soil and water loss on purple soil slopeland for intense rill erosion can be caused on 10 meter long purple soil slopes by high intensity rainfall. Under circumanstances of rainstorms, annual hedge plants grown on slopeland of 25 degrees can cause a reduction of runoff by 22 43 percent and that of erosion induced sand content by 94 98 percent. Stone bund horizontal terraces can lead to a runoff reduction by 62 67 percent in comparison with steep slopelands and that of erosion induced sediment by 97.8 99 percent. Soil and water loss can be substantially decreased on steep slopes by hedge plants with a cost of only 10 20 percent that of the stone bund horizontal terraces. Hence it is an effective way to control soil and water loss in terms of slopeland amelioration and utilization in the Three Gorges Reservoir Area.
基金the National Natural Science Foundation of China (Grant No.10702050)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC07500)the Support Plan of Science and Technology of Tianjin (Grant No.07ZCGYSH01700)
文摘A particular porosity method named "slot method" is implemented in a depth-integrated shallow water flow model (DIVAST) to simulate wetting and drying processes. Discussed is the relationship between the shape factors of the "slot" and the preset depth used in "wetting-drying" algorithm. Two typical tests are conducted to examine the performance of the method with the effect of the shape factors of the "slot" being checked in detail in the first test. Numerical results demonstrate that: 1 ) no additional effort to improve the finite difference scheme is needed to implement "slot method" in DIVAST, and 2) "slot method" will simulate wetting and diying processes correctly if the shape factors of the "slot" being selected properly.
基金supports provided by International Atomic Energy TC Project (No. PRC\08\015)the National Natural Science Founda-tion of China (No. 50579017)
文摘In this study, with the method of vacuum extraction, two evaporative processes of soil water and free water under equilibrium condition were simulated. For each sample,water vapor was condensed by liquid nitrogen and was collected in four time intervals. From the analysis of hydrogen and oxygen isotopic compositions of the water collected at different times, it was discovered that the isotope fractionation of soil water also follows the mode, which is just the same as the evaporative process of free water. The relationship between the stable hydrogen and oxygen isotopes in residual water showed that the simulative evaporation line was close to the global meteoric water line (GMWL) under the equilibrium condition at about 20℃. Comparison of the two types of evaporative processes indicated that the isotope fractionation and evaporation velocity of soil water were only slightly modified by the Van der Waals force.
文摘In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and in consequence optimize the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some practical solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).
文摘Objective In this study, a pilot-scale investigation was conducted to examine and compare the biotoxicity of the organic compounds in effluents from five treatment processes (P1-P5) where each process was combination of preoxidation (O3), coagulation, sedimentation, sand filtration, ozonation, granular activated carbon, biological activated carbon and chlorination (NaClO). Methods Organic compounds were extracted by XAD-2 resins and eluted with acetone and dichlormethane (DCM). The eluents were evaporated and redissolved with DMSO or DCM. The mutagenicity and estrogenicity of the extracts were assayed with the Ames test and yeast estrogen screen (YES assay), respectively. The organic compounds were detected by GC-MS. Results The results indicated that the mutation ratio (MR) of organic compounds in source water was higher than that for treated water. GC-MS showed that more than 48 organic compounds were identified in all samples and that treated water had significantly fewer types and concentrations of organic compounds than source water. Conclusion To different extents, all water treatment processes could reduce both the mutagenicity and estrogenicity, relative to source water. P2, P3, and P5 reduced mutagenicity more effectively, while P1 reduced estrogenicity, most effectively. Water treatment processes in this pilot plant had weak abilities to remove Di-n-butyl phthalate or 1, 2-Benzene dicarboxylic acid.
基金supported by the National Natural Science Foundation of China(41061030)the "West Light" Talent Cultivation Program,the National Basic Research Program of China(2009CB421303)the National Key Technologies R&D Program of China (2006BAD26B0802 and 2007BAD46B03)
文摘Sandy soils in arid,rain-fed environments have low and limited water content,which is a principal factor limiting vegetation development,and a key constraint controlling the structure and functions of the ecological systems in arid areas.The spatial heterogeneity of soil water content is a major soil property,and a focus of soil science and hydrology.On the southern edge of the Tengger Desert,sample plots were selected from mobile sand dunes in desertified lands that had been enclosed for 5,15 and 25 years,respectively.This study explored the dynamic and spatial heterogeneity of soil water content in these different layers of soil that were also in the reversion process of desertification.The results showed that the soil water content of the mobile sand dunes was highest when in the initial stages of the reversion process of desertification,while the soil water content in the 0-20 cm,20-40 cm and 40-60 cm layers of soil was 1.769%,3.011%,and 2.967% respectively,presenting a restoring tendency after 25 years of enclosure.There were significant differences,as a whole,in the soil water content among different restoration stages and different soil layers,respectively.Changes in soil water content,in different soil layers,at different restoration stages,exhibited exponential or spherical patterns.The spatial distribution of soil water content exhibited a mosaic patch pattern with obvious spatial heterogeneity.The ratio of the heterogeneity of spatial autocorrelation to gross spatial heterogeneity was greater than 50%.The gross spatial heterogeneity of the 0-20 cm layer of soil improved gradually,while those of the 20-40 cm and 40-60 cm layers improved initially,then weakened in the reversion process of desertification.This study revealed that restoration with sand-binding vegetation reduced soil water content,and increased its spatial heterogeneity in arid areas.However,after 25 years of vegetation-soil system restoration,the soil water content started to increase and its spatial heterogeneity started to weaken.These results will further benefit the understanding of the ecological mechanism between soil water and sand-binding vegetation.
基金financially supported by the National Natural Science Foundation of China(Grant No.51541905)
文摘This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.
文摘A model has been derived for periodic analysis of the quantity of water evaporated during thermo-processing of clay designated for production of oven refractory. The model;γ = exp〔〔lnt/2.9206〕1.3〕 shows that the quantity of evaporated water during the drying process is dependent on the drying time, with the evaporating surface being constant. It was found that the validity of the model is rooted on the expression lnγ = (lnt/Logβ)N where both sides of the equation are correspondingly almost equal. The maximum deviation of the model-predicted quantity of evaporated water from the corresponding experimental value is less than 19% which is quite within the acceptable deviation range of experimental results. Water evaporation rate as obtained from experiment and derived model were evaluated to be 0.0536 and 0.0337g mins -1 respectively.
基金supported by grants from Science and Technology Planning Project of Shenzhen [No.200703079]
文摘Purification of surface water is widely practiced with conventional water treatment processes like coagulation-flocculation, sedimentation, filtration,and disinfection. Some reports have specified that conventional wastewater purification processes do not effectively remove many chemical contaminants,
基金Sponsored by the Tianjin Municipal Science and Technology Commission (Grant No. 05FZZDSH00500)
文摘The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.
基金supported by the National Natural Science Foundation of China (41001066)the National Basic Research Program of China (Program 973) (2009CB421308)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (201101049)
文摘Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.
文摘The QDB-5 sulfur tolerant CO shift catalyst, with anti-methanation property by supported compositing alkali promoters, has been proved to effectively reduce the outlet methane content in the condition of a low water gas ratio. Thus, a new technology based on a lower water/gas ratio than before has been developed with the new catalyst. The CO conversion at lower temperatures and catalyst stability were confirmed by long term industrial application. The high temperature catalyst performance also showed a better result than the conventional commercial catalyst, with higher CO conversion and well controlled methane outlet. Our research and the industrial application of catalyst have shown the importance of alkali metals as core promoters for such kind of catalysts.
文摘In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.