Structure and properties of bioabsorbable polyglycolide (PGA) and poly(glycolide-co-lactide) (PGA-co-PLA)fibers were investigated during several industrial processing stages and in vitro degradation by means of wide-a...Structure and properties of bioabsorbable polyglycolide (PGA) and poly(glycolide-co-lactide) (PGA-co-PLA)fibers were investigated during several industrial processing stages and in vitro degradation by means of wide-angle X-raydiffraction (WAXD), dynamic mechanical analysis (DMA) and mechanical property tests. In the orientation stage, the PGAfibers were found to have higher degrees of crystallinity than corresponding PGA-co-PLA samples produced under similarconditions. In the hot-stretching and post-annealing stages, after fibers were braided, PGA samples were found to gain morecrystallinity and higher T_g than PGA-co-PLA samples. The higher crystallinity in PGA fibers resulted in a slower rate ofdegradation. DMA results showed that a great deal of internal stress that was built during orientation and hot-stretchingstages was released in the post-annealing stage for a1l PGA and PGA-co-PLA samples. During earlier stages of in vitrodegradation, both PGA and PGA-co-PLA samples exhibited the typical cleavage-induced crystallization mechanism. Theheat shrinkage in the glass transition area was found to disappear after 6-8 days of degradation for all PGA and PGA-co-PLAsamples, indicating the amorphous portions of the polymers lost orientation after a short period in the buffer solution, mostlikely due to relaxation of the cleaved chains.展开更多
Long alumina fibers were prepared by sol-gel method.The spinning sol was obtained by mixing aluminum nitrate,tartaric acid,and polyvinylpyrrolidone with a mass ratio of 10∶3∶1.5.Thermogravimetry-differential scannin...Long alumina fibers were prepared by sol-gel method.The spinning sol was obtained by mixing aluminum nitrate,tartaric acid,and polyvinylpyrrolidone with a mass ratio of 10∶3∶1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FT-IR) spectra,X-ray diffraction (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K.The fibers with a uniform diameter can be obtained when sintered at 1473 K,and its main phase is also indentified as α-Al2O3.展开更多
The interpolatory edge operator is applied to the recognition of cotton and ramie fibers. Its performance is studied in comparison with the Canny edge operator in the fiber’s edge detection for cross-sectional image....The interpolatory edge operator is applied to the recognition of cotton and ramie fibers. Its performance is studied in comparison with the Canny edge operator in the fiber’s edge detection for cross-sectional image. The input image is interpolated other than Gaussian function smoothing. The quality of edge output is improved by the interpolatory edge operator. It produces edge output with good continuity for low-resolution input. The fine edge output, such as cross-markings, can be distinguished clearly, so the interpolatory edge operator is suitable for the study of cotton and ramie fibers. Furthermore, the application of the interpolatory edge operator can cut the hardware cost, reduce the storage and speed up the data transmission.展开更多
A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a co...A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.展开更多
A comparative proteomic analysis was performed to explore the mechanism of cell elongation in developing cotton fibers.The temporal changes of global proteomes at five representative
Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of v...Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.展开更多
With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely an...With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.展开更多
Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded ...Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.展开更多
A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) w...A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.展开更多
Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems. Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal process...Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems. Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.展开更多
Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infi...Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.展开更多
Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on f...Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on fouling mitigation and stability of hollow fiber MF/UF membrane processes.Thus,establishing a mathematical model to understand the membrane processes is essential to guide the optimization of module configurations and to alleviate membrane fouling.Here,we present a comprehensive overview of the hollow fiber MF/UF membrane filtration models developed from different theories.The existing models primarily focus on membrane fouling but rarely on the interactions between the membrane fouling and local filtration hydrodynamics.Therefore,more simplified conceptual models and integrated reduced models need to be built to represent the real filtration behaviors of hollow fiber membranes.Future analyses considering practical requirements including complicated local hydrodynamics and nonuniform membrane properties are suggested to meet the accurate prediction of membrane filtration performance in practical application.This review will inspire the development of high-efficiency hollow fiber membrane modules.展开更多
The constant increase in power and heat flux densities encountered in electronic devices fuels a rising demand for lightweight heat sink materials with suitable thermal properties.In this study,discontinuous pitch-bas...The constant increase in power and heat flux densities encountered in electronic devices fuels a rising demand for lightweight heat sink materials with suitable thermal properties.In this study,discontinuous pitch-based carbon fiber reinforced aluminum matrix(Al-CF) composites with aluminum–silicon alloy(Al–Si) were fabricated through hot pressing.The small amount of Al–Si contributed to enhance the sintering process in order to achieve fully dense Al–CF composites.A thermal conductivity and CTE of 258 W/(m K) and 7.0 9 10-6/K in the in-plane direction of the carbon fibers were obtained for a(Al95 vol%+ Al–Si5 vol%)-CF50 vol%composite.Carbon fiber provides the reducing of CTE while the conservation of thermal conductivity and weight of Al.The achieved CTEs satisfy the standard requirements for a heat sink material,which furthermore possess a specific thermal conductivity of 109 W cm3/(m K g).This simple process allows the low-cost fabrication of Al–CF composite,which is applicable for a lightweight heat sink material.展开更多
基金This research was made possible by a Johnson & Johnson CORD Internship Award funded by Ethicon. BH and BF thank the National Science Foundation for partial financial support (DMR-0098104).
文摘Structure and properties of bioabsorbable polyglycolide (PGA) and poly(glycolide-co-lactide) (PGA-co-PLA)fibers were investigated during several industrial processing stages and in vitro degradation by means of wide-angle X-raydiffraction (WAXD), dynamic mechanical analysis (DMA) and mechanical property tests. In the orientation stage, the PGAfibers were found to have higher degrees of crystallinity than corresponding PGA-co-PLA samples produced under similarconditions. In the hot-stretching and post-annealing stages, after fibers were braided, PGA samples were found to gain morecrystallinity and higher T_g than PGA-co-PLA samples. The higher crystallinity in PGA fibers resulted in a slower rate ofdegradation. DMA results showed that a great deal of internal stress that was built during orientation and hot-stretchingstages was released in the post-annealing stage for a1l PGA and PGA-co-PLA samples. During earlier stages of in vitrodegradation, both PGA and PGA-co-PLA samples exhibited the typical cleavage-induced crystallization mechanism. Theheat shrinkage in the glass transition area was found to disappear after 6-8 days of degradation for all PGA and PGA-co-PLAsamples, indicating the amorphous portions of the polymers lost orientation after a short period in the buffer solution, mostlikely due to relaxation of the cleaved chains.
基金supported by the Natural Science Foundation of Shaanxi Province,China (No.2010K10-21)
文摘Long alumina fibers were prepared by sol-gel method.The spinning sol was obtained by mixing aluminum nitrate,tartaric acid,and polyvinylpyrrolidone with a mass ratio of 10∶3∶1.5.Thermogravimetry-differential scanning calorimetry (TG-DSC),Fourier transform infrared (FT-IR) spectra,X-ray diffraction (XRD),and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibers.A little of α-Al2O3 phase is observed in the alumina precursor gel fibers sintered at 1273 K.The fibers with a uniform diameter can be obtained when sintered at 1473 K,and its main phase is also indentified as α-Al2O3.
基金Supported by Foundation of National Excellent Doctoral Dissertation of China (No.200350) , NSFC (No.90204006,60377013) ,863Project (No.2005AA122110) ,the Ministry of Education, China (No.20030248035)
文摘The interpolatory edge operator is applied to the recognition of cotton and ramie fibers. Its performance is studied in comparison with the Canny edge operator in the fiber’s edge detection for cross-sectional image. The input image is interpolated other than Gaussian function smoothing. The quality of edge output is improved by the interpolatory edge operator. It produces edge output with good continuity for low-resolution input. The fine edge output, such as cross-markings, can be distinguished clearly, so the interpolatory edge operator is suitable for the study of cotton and ramie fibers. Furthermore, the application of the interpolatory edge operator can cut the hardware cost, reduce the storage and speed up the data transmission.
基金Funded by thethe National Key Technology R&D Program for the 12th Five-Year Plan(No.2013BAC01B03)the Fundamental Research Funds for the Central Universties(2014ZZ0062)
文摘A devised beating process was applied, which enabled the formation of slurry consisting of uniformly dispersed fibrillated polylactic acid(PLA) fibers with bamboo fiber, and the polymer material was obtained by a conventional papermaking process. Owing to the fast dewatering time, good repeatability and the facility to manufacture on a large scale, this process was used. It was revealed that the beaten PLA fiber was overall in machinery extrusion by the results of optical microscope and scanning electron microscope(SEM) observations. The improvement in the tensile index, burst index, tear index and other mechanical properties was considered as a key benefit as a result of adding bamboo fiber.
文摘A comparative proteomic analysis was performed to explore the mechanism of cell elongation in developing cotton fibers.The temporal changes of global proteomes at five representative
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20204007,50390090,20490220,10590355)the Doctoral Foundation of National Education Committee of China(No.20030248008)the 863 Project of China(No.2002AA336120).
文摘Finite element method is used to simulate the high-speed melt spinning process, based on the equation system proposed by Doufas et al. Calculation predicts a neck-like deformation, as well as the related profiles of velocity, diameter, temperature, chain orientation, and crystallinity in the fiber spinning process. Considering combined effects on the process such as flow-induced crystallization, viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity, the simulated material flow behaviors are consistent with those observed for semi-crystalline polymers under various spinning conditions, The structure change of polymer coils in the necking region described by the evolution of conformation tensor is also investigated. Based on the relaxation mechanism of macromolecules in flow field different types of morphology change of polymer chains before and in the neck are proposed, giving a complete prospect of structure evolution and crystallization of semi-crystalline polymer in the high speed fiber spinning process.
文摘With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.
文摘Substantial challenges remain in developing fiber devices to achieve uniform and customizable photochromic lighting effects using lightweight hardware.A recent publication in Light Science&Application,spearheaded by Prof.Yan-Qing Lu and Prof.Guangming Tao presents a methodical approach to surmount the limitations in photochromic fibers.They integrated controllable photochromic fibers into various wearable devices,providing a promising path for future exploration and advancement in the field of human–machine interaction.
基金Supported by the Important National Science & Technology Specific Projects (2009ZX07526-005-05)
文摘A lab-scale integrated treatment system including the novel sequence bio-ecological process (SBEP) and biological aerated filter (BAF) for a sewage mixture (chemistry laboratory wastewater and domestic sewage) was presented in this paper. The main objective of the study was to test the contribution of artificial aeration, recir-culation ratio and mass concentration of steel slag on pollutant removal in winter when the plants are dormant. It had been shown that SBEP and BAF play different roles in removing contaminants from wastewater. During the airflow experiment, the removal efficiency of COD and TP in SBEP was higher than that in BAF, whereas BAF can compensate for the deficiency of SBEP where no significant improvement on ammonium nitrogen removal is ob-served. Yet, the removal etticiencies of COD,TP and NH4^+ -N in SBEP could be improved apparently when ditterent recireulation ratio or various mass concentration of steel were applied. Especially, when the airflow of 0.06 L·h^-1, the recirculation ratio rate of 80% and the mass concentration of steel of 2.2-2.4 g·L^-1 were applied, thehighest efficiency of 94.6%, 77.9% and 80.7% for COD, TP and NH4^+ -N were achieved,-respectively,The integrated treatment system of SBEP and BAF was proved to be an effective wastewater treatment technique and a better alternative to treat domestic sewage.
文摘Super-continuum (SC) generated from optical fibers has many attractive applications in optical communication systems. Discussing the mechanism of wideband and flat SC generation, we describe all-optical signal processing that employs the SC.
基金supported by the National Natural Science Foundation of China (Nos. 51271042 and 51501027)the Fundamental Research Funds for the Central Universities, the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education (No. LZ2014007)+1 种基金the Natural Science Foundation of Liaoning Province (No. 2014028013)China Postdoctoral Science Foundation (No. 2015M570246)
文摘Semisolid-rolling method was successfully developed to prepare the Ni-coated woven carbon fibers reinforced Al-matrix composite. Due to the appropriate matrix flowability and rolling pressure, the Al-matrix could infiltrate into the woven fibers sufficiently and attach to the reinforcements closely forming a smooth interface. The rolling speed of 4 rad/min offered a subtle equilibrium between the heat transfer and the material deformation. The covering matrix should be controlled at semisolid state to provide a better infiltration behavior and a protective effect on the carbon fibers. With the addition of fibers, an improvement for more than 25% was obtained in the bending strength of the materials. Furthermore, the woven carbon fibers could strengthen the composite in multiple directions, rather than only along the fiber longitudinal directions. The annealing process promoted the Ni coating to react with and to diffuse into the matrix, resulted in an obvious increase of the bending strength.
基金supported by Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08L213)National Key Research and Development Program of China(No.2020YFA0211003)+1 种基金Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0403)National Natural Science Foundation of China(No.21878230)。
文摘Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on fouling mitigation and stability of hollow fiber MF/UF membrane processes.Thus,establishing a mathematical model to understand the membrane processes is essential to guide the optimization of module configurations and to alleviate membrane fouling.Here,we present a comprehensive overview of the hollow fiber MF/UF membrane filtration models developed from different theories.The existing models primarily focus on membrane fouling but rarely on the interactions between the membrane fouling and local filtration hydrodynamics.Therefore,more simplified conceptual models and integrated reduced models need to be built to represent the real filtration behaviors of hollow fiber membranes.Future analyses considering practical requirements including complicated local hydrodynamics and nonuniform membrane properties are suggested to meet the accurate prediction of membrane filtration performance in practical application.This review will inspire the development of high-efficiency hollow fiber membrane modules.
文摘The constant increase in power and heat flux densities encountered in electronic devices fuels a rising demand for lightweight heat sink materials with suitable thermal properties.In this study,discontinuous pitch-based carbon fiber reinforced aluminum matrix(Al-CF) composites with aluminum–silicon alloy(Al–Si) were fabricated through hot pressing.The small amount of Al–Si contributed to enhance the sintering process in order to achieve fully dense Al–CF composites.A thermal conductivity and CTE of 258 W/(m K) and 7.0 9 10-6/K in the in-plane direction of the carbon fibers were obtained for a(Al95 vol%+ Al–Si5 vol%)-CF50 vol%composite.Carbon fiber provides the reducing of CTE while the conservation of thermal conductivity and weight of Al.The achieved CTEs satisfy the standard requirements for a heat sink material,which furthermore possess a specific thermal conductivity of 109 W cm3/(m K g).This simple process allows the low-cost fabrication of Al–CF composite,which is applicable for a lightweight heat sink material.