The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Sys...The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancella...A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ...Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss...River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.展开更多
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t...A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.展开更多
The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,th...The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity.展开更多
Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation e...Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.展开更多
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep...This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional meth...Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.展开更多
The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with...The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with a smooth surface in the laboratory. An optical remote sensing simulation system used to detect ISWs is constructed by a two-dimensional ISW flume, a LED (light emitting diode) light source and two CCD (charge coupled device) cameras. The optical remote sensing images of the horizontal surface and ISWs propagation images of a vertical side are detected simultaneously, which aims to explore the response of optical remote sensing corresponding to ISWs with the smooth surface. The results show that during the propagation of ISWs, dark pattern images are obtained by CCD 1 camera. The characteristics of the dark patterns vary along with the incident angle of the light source. The characteristic parameters of the optical remote sensing images correspond to the wave factors of vertical profiles. The experiment also shows a positive correlation between the dark pattern width and the half wave width under different amplitudes of ISWs. The system has the advantages of clear phenomenon and high repeatability, which provides the scientific basis for quantitative investigation on imaging mechanism of ISW by optical remote sensing.展开更多
We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromati...We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromatic image data and multi-spectral image data were first decomposed with a multi-ary wavelet method. Then the high frequency components of the high resolution image were fused with the features from the R, G, B bands of the multi-spectral image to form a new high frequency component. Then the newly formed high frequency component and the low frequency component were inversely transformed using a multi-ary wavelet method. Finally, color images were formed from the newly formed R, G, B bands. In our experiment we used images with a resolution of 10 m (SPOT), and TM30 images, of the Huainan mining area. These images were fused with a trinary wavelet method. In addition, we used four indexes—entropy, average gradient, wavelet energy and spectral distortion—to assess the new method. The result indicates that this new method can improve the clarity and resolution of the images and also preserves the information from the original images. Using the fused images for monitoring mining induced subsidence achieves a good effect.展开更多
As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification pro...As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.展开更多
The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of ex...How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘The primary objective of this research is to delineate potential groundwater recharge zones in the Kadaladi taluk of Ramanathapuram,Tamil Nadu,India,using a combination of remote sensing and Geographic Information Systems(GIS)with the Analytical Hierarchical Process(AHP).Various factors such as geology,geomorphology,soil,drainage,density,lineament density,slope,rainfall were analyzed at a specific scale.Thematic layers were evaluated for quality and relevance using Saaty's scale,and then inte-grated using the weighted linear combination technique.The weights assigned to each layer and features were standardized using AHP and the Eigen vector technique,resulting in the final groundwater potential zone map.The AHP method was used to normalize the scores following the assignment of weights to each criterion or factor based on Saaty's 9-point scale.Pair-wise matrix analysis was utilized to calculate the geometric mean and normalized weight for various parameters.The groundwater recharge potential zone map was created by mathematically overlaying the normalized weighted layers.Thematic layers indicating major elements influencing groundwater occurrence and recharge were derived from satellite images.2 Results indicate that approximately 21.8 km of the total area exhibits high potential for groundwater recharge.Groundwater recharge is viable in areas with moderate slopes,particularly in the central and southeastern regions.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
文摘A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘River bank erosion is a natural process that occurs when the water flow of a river exceeds the bank’s ability to withstand it. It is a common phenomenon that causes extensive land damage, displacement of people, loss of crops, and infrastructure damage. The Gorai River, situated on the right bank of the Ganges, is a significant branch of the river that flows into the Bay of Bengal via the Mathumati and Baleswar rivers. The erosion of the banks of the Gorai River in Kushtia district is not a recent occurrence. Local residents have been dealing with this issue for the past hundred years, and according to the elderly members of the community, the erosion has become more severe activities. Therefore, the main objective of this research is to quantify river bank erosion and accretion and bankline shifting from 2003 to 2022 using multi-temporal Landsat images data with GIS and remote sensing technique. Bank-line migration occurs as a result of the interplay and interconnectedness of various factors such as the degree of river-related processes such as erosion, transportation, and deposition, the amount of water in the river during the high season, the geological and soil makeup, and human intervention in the river. The results show that the highest eroded area was 4.6 square kilometers during the period of 2016 to 2019, while the highest accreted area was 7.12 square kilometers during the period of 2013 to 2016. However, the erosion and accretion values fluctuated from year to year.
文摘A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.
文摘The remote sensing ships’fine-grained classification technology makes it possible to identify certain ship types in remote sensing images,and it has broad application prospects in civil and military fields.However,the current model does not examine the properties of ship targets in remote sensing images with mixed multi-granularity features and a complicated backdrop.There is still an opportunity for future enhancement of the classification impact.To solve the challenges brought by the above characteristics,this paper proposes a Metaformer and Residual fusion network based on Visual Attention Network(VAN-MR)for fine-grained classification tasks.For the complex background of remote sensing images,the VAN-MR model adopts the parallel structure of large kernel attention and spatial attention to enhance the model’s feature extraction ability of interest targets and improve the classification performance of remote sensing ship targets.For the problem of multi-grained feature mixing in remote sensing images,the VAN-MR model uses a Metaformer structure and a parallel network of residual modules to extract ship features.The parallel network has different depths,considering both high-level and lowlevel semantic information.The model achieves better classification performance in remote sensing ship images with multi-granularity mixing.Finally,the model achieves 88.73%and 94.56%accuracy on the public fine-grained ship collection-23(FGSC-23)and FGSCR-42 datasets,respectively,while the parameter size is only 53.47 M,the floating point operations is 9.9 G.The experimental results show that the classification effect of VAN-MR is superior to that of traditional CNNs model and visual model with Transformer structure under the same parameter quantity.
文摘Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.
基金The Public Science and Technology Research Fund Project of Ocean under contract No.201105001the National Nature Science Foundation of China under contract No.41576174the Public Science and Technology Research Fund Project of Surveying,Mapping and Geoinformation under contract No.201512030
文摘This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金Under the auspices of National Natural Science Foundation of China (No. 40871241, 40771170)National High Technology Research and Development Program of China (No. 2007AA12Z176)
文摘Wetland research has become a hot spot linking multiple disciplines presently. Wetland classification and mapping is the basis for wetland research. It is difficult to generate wetland data sets using traditional methods because of the low accessibility of wetlands, hence remote sensing data have become one of the primary data sources in wetland research. This paper presents a case study conducted at the core area of Honghe National Nature Reserve in the Sanjiang Plain, Northeast China. In this study, three images generated by airship, from Thematic Mapper and from SPOT 5 were selected to produce wetland maps at three different wetland landscape levels. After assessing classification accuracies of the three maps, we compared the different wetland mapping results of 11 plant communities to the airship image, 6 plant ecotypes to the TM image and 9 landscape classifications to the SPOT 5 image. We discussed the different characteristics of the hierarchical ecosystem classifications based on the spatial scales of the different images. The results indicate that spatial scales of remote sensing data have an important link to the hierarchies of wetland plant ecosystems displayed on the wetland landscape maps. The richness of wetland landscape information derived from an image closely relates to its spatial resolution. This study can enrich the ecological classification methods and mapping techniques dealing with the spatial scales of different remote sensing images. With a better understanding of classification accuracies in mapping wetlands by using different scales of remote sensing data, we can make an appropriate approach for dealing with the scale issue of remote sensing images.
基金The National Key Research and Development Program of China under contract No.2017YFC1405600the National Natural Science Foundation of China under contract No.41476001
文摘The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with a smooth surface in the laboratory. An optical remote sensing simulation system used to detect ISWs is constructed by a two-dimensional ISW flume, a LED (light emitting diode) light source and two CCD (charge coupled device) cameras. The optical remote sensing images of the horizontal surface and ISWs propagation images of a vertical side are detected simultaneously, which aims to explore the response of optical remote sensing corresponding to ISWs with the smooth surface. The results show that during the propagation of ISWs, dark pattern images are obtained by CCD 1 camera. The characteristics of the dark patterns vary along with the incident angle of the light source. The characteristic parameters of the optical remote sensing images correspond to the wave factors of vertical profiles. The experiment also shows a positive correlation between the dark pattern width and the half wave width under different amplitudes of ISWs. The system has the advantages of clear phenomenon and high repeatability, which provides the scientific basis for quantitative investigation on imaging mechanism of ISW by optical remote sensing.
基金Project 2003-38 supported by the Geological Investigation Item of Anhui Province
文摘We discuss remote-sensing-image fusion based on a multi-band wavelet and RGB feature fusion method. The fused data can be used to monitor the dynamic evolution of mining induced subsidence. High resolution panchromatic image data and multi-spectral image data were first decomposed with a multi-ary wavelet method. Then the high frequency components of the high resolution image were fused with the features from the R, G, B bands of the multi-spectral image to form a new high frequency component. Then the newly formed high frequency component and the low frequency component were inversely transformed using a multi-ary wavelet method. Finally, color images were formed from the newly formed R, G, B bands. In our experiment we used images with a resolution of 10 m (SPOT), and TM30 images, of the Huainan mining area. These images were fused with a trinary wavelet method. In addition, we used four indexes—entropy, average gradient, wavelet energy and spectral distortion—to assess the new method. The result indicates that this new method can improve the clarity and resolution of the images and also preserves the information from the original images. Using the fused images for monitoring mining induced subsidence achieves a good effect.
基金Supported by the Science Research Foundation(2010Y290) of Yunnan Department of Education
文摘As the key technology of extracting remote sensing information,the classification of remote sensing images has always been the research focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to the recent research status of domestic and international remote sensing classification methods,the new study dynamics of remote sensing classification,such as artificial neural networks,support vector machine,active learning and ensemble multi-classifiers,were introduced,providing references for the automatic and intelligent development of remote sensing images classification.
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金National High Technology Research and Development Program of China(No.2007AA120305)National ScienceFoundation of China(No.40771145)+2 种基金Special Project of Ministry of Science and Technology of China(No.GYHY20070628)Subtopics of Ministry of Land and Resources Project of China(No.KD081902-03)Scientific Research and Innovation Project of Graduate School of Shanghai University,China(No.SHUCX101033)
文摘How to extract river nets effectively is of great significance for water resources investigation,flood forecasting and environmental monitoring,etc.In the paper,combining with ant colony algorithm,a new approach of extracting river nets on moderate-resolution imaging spectroradiometer(MODIS)remote sensing images was proposed through analyzing two general extraction methods of river nets.The experiment results show that river nets can be optimized by ant colony algorithm efficiently,and difference ratio between the experimental vectorgraph and the data of National Fundamental Geographic Information System is down to 8.7%.The proposed algorithm can work for extracting river nets on MODIS remote sensing images effectively.