The hot deformation characteristics of Rene88DT superalloy with directionally solidified micro- structure produced by electroslag remelting continuous directionally solidification (ESR-CDS) were studied in the tempe...The hot deformation characteristics of Rene88DT superalloy with directionally solidified micro- structure produced by electroslag remelting continuous directionally solidification (ESR-CDS) were studied in the temperature range of 1,040-1,140 ℃ and strain rate range of 0.001-1.000 s-1 by hot compression tests. Flow curves for Rene88DT alloy with initial directionally solidified (DS) microstructure exhibit pronounced peak stresses at the early stage of deformation followed by the occurrence of dynamic softening phenomenon. Rene88DT alloy with DS micro- structure shows higher flow peak stresses compared with HIPed P/M superalloy FGH4096, but the disparities in peak stresses between ESR-CDSed Rene88DT and HIPed P/M superalloy FGH4096 reduce as temperature increases. The improvement of hot workability of DS alloy with columnar grains avoiding the maximum shear stress comes true. A hot deformation constitutive equation as a function of strain that describes the dependence of flow stress on strain rate and temperature is established. Hot deformation apparent acti- vation energy (Q) varies not only with the strain rate and temperature but also with strain. The strain rate sensitivity exponent (m) map is established at the strain of 0.8, which reveals that global dynamic recrystallization (DRX) shows a relatively high m value in a large strain compression. Optimum parameters are predicted in two regions: T = 1,100-1,130 ℃, ε = 0.100-1.000 s-1 and T = 1,080- 1,100 ℃, ε = 0.010-100 s-1, which is based on pro- cessing maps and deformation microstructure observations.展开更多
The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, tem...The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, temperature range of 750-950℃ and strain rate of 0.002-1.000 s-1. The flow stress-strain response shows the characterization of dynamic recrystallization (DRX), and the peak stress increases gradually with deformation tem- perature decreasing and strain rate increasing. The defor- mation activation energy of the composite for DRX is calculated as 241.864 kJ.mo1-1. The constitutive relation of the composite was got by Arrhenius equation. Further- more, according to the dynamic material modeling and Kumar-Prasad's instability criteria, the processing map was constructed and the unsafe regions for hot deformation were analyzed. Based on the processing map and microstructural evolution, the optimal parameter range for hot deformation processing is 750-863℃ at the strain rate of 0.002-0.013 s-1.展开更多
The high-temperature plastic deformation behavior of BT25y alloy with an initial equiaxed microstructure was investigated by hot compression tests. Processing maps were established to evaluate the power dissipation ef...The high-temperature plastic deformation behavior of BT25y alloy with an initial equiaxed microstructure was investigated by hot compression tests. Processing maps were established to evaluate the power dissipation efficiency (η) and identify the flow instability regions. When the strain reaches steady state, the optimum processing window is distributed in the area covering most of the studied deformation temperatures and strain rates of 1 × 10-2 to 1× 10-1 s-1. True strain has great effects on the power dissipation efficiency under the condition of 880 ℃/1× 10-3 s-1, but the efficiency values remain approximately constant (η= 0.40) at conditions of 900-940 ℃/1× 10-2 to 1 × 10-1 S-1 and 980-1000 ℃/ 1× 10-1 s- 1. Besides, the instability regions are distributed in high strain rate areas no matter how many of the strains. Based on the processing map and microstructural observa- tion, it can be concluded that the deformation mechanisms related to Region I with small strain rate and lower temper- ature in α+β phase field, Region II with medium strain rate and higher temperature inα+β phase field, Region III with medium strain rate and high temperature in βphase field are superplasticity and strain-induced transformation, dynamicrecrystallization (DRX) and phase transformation, β phase dynamic recovery and local DRX, respectively.展开更多
基金financially supported by the Military Supporting Project (No. JPPT125GJGG11)
文摘The hot deformation characteristics of Rene88DT superalloy with directionally solidified micro- structure produced by electroslag remelting continuous directionally solidification (ESR-CDS) were studied in the temperature range of 1,040-1,140 ℃ and strain rate range of 0.001-1.000 s-1 by hot compression tests. Flow curves for Rene88DT alloy with initial directionally solidified (DS) microstructure exhibit pronounced peak stresses at the early stage of deformation followed by the occurrence of dynamic softening phenomenon. Rene88DT alloy with DS micro- structure shows higher flow peak stresses compared with HIPed P/M superalloy FGH4096, but the disparities in peak stresses between ESR-CDSed Rene88DT and HIPed P/M superalloy FGH4096 reduce as temperature increases. The improvement of hot workability of DS alloy with columnar grains avoiding the maximum shear stress comes true. A hot deformation constitutive equation as a function of strain that describes the dependence of flow stress on strain rate and temperature is established. Hot deformation apparent acti- vation energy (Q) varies not only with the strain rate and temperature but also with strain. The strain rate sensitivity exponent (m) map is established at the strain of 0.8, which reveals that global dynamic recrystallization (DRX) shows a relatively high m value in a large strain compression. Optimum parameters are predicted in two regions: T = 1,100-1,130 ℃, ε = 0.100-1.000 s-1 and T = 1,080- 1,100 ℃, ε = 0.010-100 s-1, which is based on pro- cessing maps and deformation microstructure observations.
基金financially supported by the National Natural Science Foundation of China(No.50571035)the National High-Tech Research and Development Project (No.2006AA03Z528)
文摘The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, temperature range of 750-950℃ and strain rate of 0.002-1.000 s-1. The flow stress-strain response shows the characterization of dynamic recrystallization (DRX), and the peak stress increases gradually with deformation tem- perature decreasing and strain rate increasing. The defor- mation activation energy of the composite for DRX is calculated as 241.864 kJ.mo1-1. The constitutive relation of the composite was got by Arrhenius equation. Further- more, according to the dynamic material modeling and Kumar-Prasad's instability criteria, the processing map was constructed and the unsafe regions for hot deformation were analyzed. Based on the processing map and microstructural evolution, the optimal parameter range for hot deformation processing is 750-863℃ at the strain rate of 0.002-0.013 s-1.
基金financially supported by the National Natural Science Foundation of China (No.51175431)
文摘The high-temperature plastic deformation behavior of BT25y alloy with an initial equiaxed microstructure was investigated by hot compression tests. Processing maps were established to evaluate the power dissipation efficiency (η) and identify the flow instability regions. When the strain reaches steady state, the optimum processing window is distributed in the area covering most of the studied deformation temperatures and strain rates of 1 × 10-2 to 1× 10-1 s-1. True strain has great effects on the power dissipation efficiency under the condition of 880 ℃/1× 10-3 s-1, but the efficiency values remain approximately constant (η= 0.40) at conditions of 900-940 ℃/1× 10-2 to 1 × 10-1 S-1 and 980-1000 ℃/ 1× 10-1 s- 1. Besides, the instability regions are distributed in high strain rate areas no matter how many of the strains. Based on the processing map and microstructural observa- tion, it can be concluded that the deformation mechanisms related to Region I with small strain rate and lower temper- ature in α+β phase field, Region II with medium strain rate and higher temperature inα+β phase field, Region III with medium strain rate and high temperature in βphase field are superplasticity and strain-induced transformation, dynamicrecrystallization (DRX) and phase transformation, β phase dynamic recovery and local DRX, respectively.