期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization Task Scheduling Using Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems 被引量:1
1
作者 Ahmed Y.Hamed M.Kh.Elnahary +1 位作者 Faisal S.Alsubaei Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期2133-2148,共16页
Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the ... Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan. 展开更多
关键词 Heterogeneous processors cooperation search algorithm task scheduling cloud computing
下载PDF
Task Scheduling Optimization in Cloud Computing by Rao Algorithm
2
作者 A.Younes M.KhElnahary +1 位作者 Monagi H.Alkinani Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2022年第9期4339-4356,共18页
Cloud computing is currently dominated within the space of highperformance distributed computing and it provides resource polling and ondemand services through the web.So,task scheduling problem becomes a very importa... Cloud computing is currently dominated within the space of highperformance distributed computing and it provides resource polling and ondemand services through the web.So,task scheduling problem becomes a very important analysis space within the field of a cloud computing environment as a result of user’s services demand modification dynamically.The main purpose of task scheduling is to assign tasks to available processors to produce minimum schedule length without violating precedence restrictions.In heterogeneous multiprocessor systems,task assignments and schedules have a significant impact on system operation.Within the heuristic-based task scheduling algorithm,the different processes will lead to a different task execution time(makespan)on a heterogeneous computing system.Thus,a good scheduling algorithm should be able to set precedence efficiently for every subtask depending on the resources required to reduce(makespan).In this paper,we propose a new efficient task scheduling algorithm in cloud computing systems based on RAO algorithm to solve an important task and schedule a heterogeneous multiple processing problem.The basic idea of this process is to exploit the advantages of heuristic-based algorithms to reduce space search and time to get the best solution.We evaluate our algorithm’s performance by applying it to three examples with a different number of tasks and processors.The experimental results show that the proposed approach significantly succeeded in finding the optimal solutions than others in terms of the time of task implementation. 展开更多
关键词 Heterogeneous processors RAO algorithm heuristic algorithms task scheduling MULTIPROCESSING cloud computing
下载PDF
Cooperative Computing Techniques for a Deeply Fused and Heterogeneous Many-Core Processor Architecture 被引量:13
3
作者 郑方 李宏亮 +3 位作者 吕晖 过锋 许晓红 谢向辉 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第1期145-162,共18页
Due to advances in semiconductor techniques, many-core processors have been widely used in high performance computing. However, many applications still cannot be carried out efficiently due to the memory wall, which h... Due to advances in semiconductor techniques, many-core processors have been widely used in high performance computing. However, many applications still cannot be carried out efficiently due to the memory wall, which has become a bottleneck in many-core processors. In this paper, we present a novel heterogeneous many-core processor architecture named deeply fused many-core (DFMC) for high performance computing systems. DFMC integrates management processing ele- ments (MPEs) and computing processing elements (CPEs), which are heterogeneous processor cores for different application features with a unified ISA (instruction set architecture), a unified execution model, and share-memory that supports cache coherence. The DFMC processor can alleviate the memory wall problem by combining a series of cooperative computing techniques of CPEs, such as multi-pattern data stream transfer, efficient register-level communication mechanism, and fast hardware synchronization technique. These techniques are able to improve on-chip data reuse and optimize memory access performance. This paper illustrates an implementation of a full system prototype based on FPGA with four MPEs and 256 CPEs. Our experimental results show that the effect of the cooperative computing techniques of CPEs is significant, with DGEMM (double-precision matrix multiplication) achieving an efficiency of 94%, FFT (fast Fourier transform) obtaining a performance of 207 GFLOPS and FDTD (finite-difference time-domain) obtaining a performance of 27 GFLOPS. 展开更多
关键词 heterogeneous many-core processor data stream transfer register-level communication mechanism hardwaresynchronization technique processor prototype
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部