期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Purification of Produced Water from a Sour Oilfield in South Kuwait. 2. Oil-Water Separation and Crystallization of Calcium Carbonate
1
作者 Feras Al Salem Najood Almansoori +4 位作者 Hanifa AlBalooshi Nouf Alshehhi Maitha Almheiri Vijo Poulose Thies Thiemann 《Journal of Water Resource and Protection》 CAS 2024年第7期467-488,共22页
Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ... Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm. 展开更多
关键词 produced water Oil and Gas Bleached Biomass Adsorption Filtration Crystallization of Calcium Chloride
下载PDF
Purification of Produced Water from a Sour Oilfield in South Kuwait. 1. Oil-Water Separation and Industrial Salt Production
2
作者 Feras Al Salem Hessa Al Shamsi +5 位作者 Mariam Mohammed Abdulla Alaryani Basmalah Abdelazim Mohamed Khalaf Omnia Elsheikh Vijo Poulose Yosef Al Jasem Thies Thiemann 《Journal of Water Resource and Protection》 CAS 2024年第2期156-180,共25页
Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified... Produced water from an oil extraction site in South Kuwait was sampled after primary oil – water separation had been carried out. The produced water was filtered through a mixture of activated charcoal and esterified cellulosic material gained from spent coffee grounds as a tertiary adsorption treatment. The earth-alkaline metal ions and heavy metals were separated from the de-oiled produced water by addition of either sodium or potassium hydroxide in the presence of carbon dioxide or by direct addition of solid sodium carbonate. The resulting filtrate gave salt of industrial purity upon selective crystallization on evaporation. 展开更多
关键词 produced water Oil and Gas Adsorption Filtration CRYSTALLIZATION
下载PDF
Variability in Quantity and Salinity of Produced Water from an Oil Production in South Kuwait
3
作者 Feras Al Salem Thies Thiemann 《Engineering(科研)》 2024年第1期8-23,共16页
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w... Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait. 展开更多
关键词 produced water Oil Wells water-Cut Salinity Fluctuation Total Dissolved Solids
下载PDF
Kinetic Performance of Oil-field Produced Water Treatment by Biological Aerated Filter 被引量:22
4
作者 苏德林 王建龙 +1 位作者 刘凯文 周定 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第4期591-594,共4页
The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re... The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates. 展开更多
关键词 biological aerated filter KINETICS oil field produced water wastewater treatment
下载PDF
Flux enhancement during ultrafiltration of produced water using turbulence promoter 被引量:7
5
作者 ZHEN Xiang-hua YU Shui-li WANG Bei-fu ZHENG Hai-feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1077-1081,共5页
Concentration polarization and membrane fouling remain one of the major hurdles for the implementation of ultrafiltration of produced water. Although many applications for ultrafiltration were already suggested, only ... Concentration polarization and membrane fouling remain one of the major hurdles for the implementation of ultrafiltration of produced water. Although many applications for ultrafiltration were already suggested, only few were implemented on an industrial scale. Among those techniques, turbulence promoter can be more simple and effective in overcoming membrane fouling and enhancing membrane flux. As for the result that turbulence promoter increase fluid velocity, wall shear rates and produce secondary flows or instabilities, the influence of turbulence promoter was investigated on permeate flux during produced water ultrafiltration and the potential application of this arrangement for an industrial development. Experimental investigations were performed on 100 KDa molecular weight cut-off PVDF single-channel tubular membrane module using four kinds of turbulence promoters. It is observed that the significant flux enhancement in the range of 83%--164% was achieved while the hydraulic dissipated power per unit volume of permeate decreased from 31%--42%, which indicated that the using of turbulence promoter is more efficient than operation without the turbulence promoter. The effects of transmembrane pressure and cross-flow velocity with and without turbulence promoter were studied as well. Among the four kinds of turbulence promoters, winding inserts with 20.0 mm pitch and 1.0 mm wire diameter showed better performances than the others did. 展开更多
关键词 hydraulic dissipated power flux enhancement turbulence promoter produced water ULTRAFILTRATION
下载PDF
Influences of water treatment agents on oil-water interfacial properties of oilfield produced water 被引量:9
6
作者 Guo Jixiang Cao Jingjing +1 位作者 Li Mingyuan Xia Haiying 《Petroleum Science》 SCIE CAS CSCD 2013年第3期415-420,共6页
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh... The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties. 展开更多
关键词 water treatment agents oil-water interracial properties emulsion stability oilfield produced water
下载PDF
Bioflocculant Produced by Klebsiella sp. MYC and Its Appli-cation in the Treatment of Oil-field Produced Water 被引量:7
7
作者 YUE Lixi MA Chunling CHI Zhenming 《Journal of Ocean University of China》 SCIE CAS 2006年第4期333-338,共6页
Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension... Seventy-nine strains of bioflocculant-producing bacteria were isolated from 3 activated sludge samples. Among them, strain MYC was found to have the highest and stable flocculating rate for both kaolin clay suspension and oil-field produced water. The bacterial strain was identified as Klebsiella sp. MYC according to its morphological and biochemical characteristics and 16SrDNA sequence. The optimal medium for bioflocculant production by this bacterial strain was composed of cane sugar 20 g L^-1, KH2PO4 2 g L^-1, K2HPO4 5 g L^- 1, ( NH4)2SO4 0.2 g L^-1, urea 0.5 g L^- 1 and yeast extract 0.5 g L^- 1, the initial pH being 5.5. When the suspension of kaolin clay was treated with0.5% of Klebsiella sp. MYC culture broth, the flocculating rate reached more than 90.0% in the presence of 500mg L^-1 CaCI2, while the flocculating rate for oil-field produced water was near 80.0% in a pH range of 7.0 - 9.0 with the separation of oil and suspended particles from the oil-field produced water under similar conditions. The environment-friendly nature of the bioflocculant and high flocculating rate of the strain make the bioflocculant produced by Klebsiella sp. MYC an attractive bioflocculant in oil-field produced water treatment. 展开更多
关键词 BIOFLOCCULANT Klebsiella sp. MYC oil-field produced water
下载PDF
Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique 被引量:8
8
作者 Saad H.Ammar Ahmed S.Akbar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第4期879-885,共7页
Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produc... Oilfield produced water is large quantities of salty water trapped in underground formations and subsisted under high temperatures and pressures that are brought to the surface along with oil during production. Produced water(PW) contains a lot of pollutants such as hydrocarbons and metals, this water must be treated before disposal. Therefore, different techniques are being used to treat produced water. Electrocoagulation is an efficient treatment technique involving the dissolution of anodes and formation of electro-coagulants, while the simultaneous generation of H_2 bubbles at the cathode leads to the pollutant removal by flotation. Electrocoagulation(EC)method is one of the most promising and widely used processes to treat oilfield produced water. In the present work, a conventional internal-loop(draught tube) airlift reactor was utilized as electrocoagulation/flotation cell for PW treatment by inserting two aluminum electrodes in the riser section of the airlift reactor. The EC airlift reactor was operated in a batch mode for the liquid phase. Different experimental parameters were studied on the oil and turbidity removal efficiencies such as current density, initial pH, electrocoagulation time, and air injection.The experimental results showed that mixing of the oil droplets in the PW was accomplished using only the liquid recirculation resulted by H_2 microbubbles generated by EC process which enhanced the oil removal. The experimental results further showed that the EC time required achieving ≥ 90% oil removal efficiency decreases from 46 to 15 min when operating current density increases from 6.8 to 45.5 mA·cm^(-2). This reactor type was found to be highly efficient and less energy consuming compared to conventional existing electrochemical cells which used mechanical agitation. 展开更多
关键词 produced water Wastewater treatment Electrocoagulation/flotation Internal loop Airlift reactor
下载PDF
Characteristics of dissolved inorganic carbon in produced water from coalbed methane wells and its geological significance 被引量:3
9
作者 YANG Zhaobiao QIN Yong +3 位作者 QIN Zonghao YI Tongsheng LI Cunlei ZHANG Zhengguang 《Petroleum Exploration and Development》 2020年第5期1074-1083,共10页
Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations of... Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations ofδ13CDIC of the GP well group produced in multi-layer commingled manner were analyzed,and the relationship between the value ofδ13CDIC and CBM productivity was examined.The produced water samples of typical wells in the GP well group were amplified and sequenced using 16S rDNA,and a geological response model ofδ13CDIC in produced water from CBM wells with multi-coal seams was put forward.The research shows that:δ13CDIC in produced water from medium-rank coal seams commonly show positive anomalies,the produced water contains more than 15 species of methanogens,and Methanobacterium is the dominant genus.The dominant methanogens sequence numbers in the produced water are positively correlated withδ13CDIC,and the positive anomaly of v is caused by reduction of methanogens,and especially hydrogenotrophic methanogens.Vertical segmentation of sedimentary facies and lithology in stratum with multi-coal seams will result in permeability and water cut segmentation,which will lead to the segmentation ofδ13CDIC and archaea community in produced water,so in the strata with better permeability and high water cut,theδ13CDIC of the produced water is abnormally enriched,and the dominant archaea is mainly Methanobacterium.In the strata with weak permeability and low water cut,theδ13CDIC of the produced water is small,and the microbial action is weak.The shallow layer close to the coal seam outcrop is likely to be affected by meteoric precipitation,so theδ13CDIC of the produced water is smaller.The geological response model ofδ13CDIC in produced water from multi-coal seams CBM wells in the medium-rank coal reveals the geological mechanism and microbial action mechanism of theδ13CDIC difference in the produced water from the multi-coal seams CBM wells.It also provides effective geochemical evidence for the superimposed fluid system controlled by sedimentary facies,and can also be used for the contribution analysis of the produced gas and water by the multi-layer CBM wells. 展开更多
关键词 coalbed methane produced water from coal seam dissolved inorganic carbon stable carbon isotope archaea community microbial gene CBM productivity geological response model
下载PDF
Produced Water from Oil and Gas Exploration—Problems, Solutions and Opportunities 被引量:1
10
作者 Feras Salem Thies Thiemann 《Journal of Water Resource and Protection》 2022年第2期142-185,共44页
Large volumes of water are generated in gas- and oil-production. This includes the water that is present originally in the reservoirs, but also water that is injected into the wells. While currently much of the produc... Large volumes of water are generated in gas- and oil-production. This includes the water that is present originally in the reservoirs, but also water that is injected into the wells. While currently much of the produced water is either reinjected or disposed of after treatment, treated produced water is increasingly seen as an interesting resource, especially in water-scarce regions. This review looks at different PW treatment methods available, with an emphasis on the management of PW in oil- and gas production on the Arabian Peninsula. 展开更多
关键词 produced water Oil Exploration Gas Exploration water Treatment Methodology Membrane Separation Arabian Peninsula
下载PDF
Perikinetics and sludge study for the decontamination of petroleum produced water(PW) using novel mucuna seed extract
11
作者 Matthew Menkiti Ifechukwu Ezemagu Bernard Okolo 《Petroleum Science》 SCIE CAS CSCD 2016年第2期328-339,共12页
In this study, Mucuna flagellipes seed extract was applied in the coagulation-flocculation of produced water (PW). Process parameters such as pH, dosage, and settling time were investigated. Process kinetics was als... In this study, Mucuna flagellipes seed extract was applied in the coagulation-flocculation of produced water (PW). Process parameters such as pH, dosage, and settling time were investigated. Process kinetics was also studied. Instrumental characterization of mucuna seed (MS), mucuna seed coagulant (MSC), and post effluent treatment settled sludge (PTSS) were carried out. The optimum decontamination efficiency of 95 % was obtained at 1 g/L MSC dosage, PW pH of 2, and rate constant of 0.0001 (L/g/s). Characterization results indicated that MS, MSC, and PTSS were of network structure, primitive lat- tice, and thermally stable. It could be concluded that MSC would be potential biomass for the treatment of produced water under the experimental conditions. 展开更多
关键词 Mucuna seed produced water Coagulationflocculation SLUDGE Perikinetics
下载PDF
Removal of ions from produced water using Powder River Basin coal
12
作者 Zaixing Huang Fangjing Liu +5 位作者 Mingchen Tang Yangyan Gao David MBagley Xin He Alexander Goroncy Maohong Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第1期46-57,共12页
In addition to being used as an energy source,coal also has significant potential for other,more sustainable uses including water treatment.In this study,we present a simple approach to treat water that was produced d... In addition to being used as an energy source,coal also has significant potential for other,more sustainable uses including water treatment.In this study,we present a simple approach to treat water that was produced during oil production and contained a total dissolved solids(TDS)content of over 150 g/L using Powder River Basin(PRB)coal.PRB coal used as packing material in a flow-through column effectively removed 60%–80%of the cations and anions simultaneously.Additionally,71%–92%of the total organic carbon in the produced water was removed as was all of the total suspended solids.The removal mechanisms of both cations and anions were investigated.Cations were removed by ion exchange with protons from oxygen-containing functional groups such as carboxylic and phenolic hydroxyl groups.Anions,mainly Cl−1,appeared to be removed through either the formation of resonance structures as a result of delocalization of electrons within coal molecules or through ion–πinteractions.We propose that coal is a“pseudo-amphoteric”exchange material that can remove cations and anions simultaneously by exchanging ions with both ionized and non-ionized acids that are ubiquitous in coal structure or resonance effect. 展开更多
关键词 produced water Ion exchange Resonance effect Ion–πinteraction SUSTAINABILITY
下载PDF
Corrosion Behavior of Pipeline Steel in Oilfield Produced Water under Dynamic Corrosion System
13
作者 ZHAO Jie LIU Yida +4 位作者 YANG Xiaoyu HE Xin WANG Lei XIONG Dan GU Yanhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期677-691,共15页
In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic conditio... In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic condition and simulated real working condition at the flow rate of 0.2,0.4,and 0.6 m·s^(-1).Potentiodynamic polarization curves and electrochemical impedance spectroscopy were used to study the corrosion behavior of X100 steel.Energy dispersive spectroscopy,X-ray diffraction and scanning electron microscopy were used to analyze corrosion product composition and micromorphology.The experimental results show that the corrosion is more serious under simulated real working conditions than that under the general dynamic conditions.In any case the corrosion current density increases with the increase of the flow rate,and the total impedance value decreases.The corrosion products include Fe_(3)O_(4),Fe_(2)O_(3),and FeOOH.The mass transfer and electrochemistry were simulated by flow coupled in COMSOL software.The multiphysical field coupling simulation results are closer to the engineering practice than the single flow field simulation,and similar results from the experiments were obtained.Both experimental and simulation results reveal that the higher flow rate is,the more serious corrosion appear and the more corrosion products accumulate.By combining experimental and COMSOL simulation data,the corrosion process model of X100 steel was proposed. 展开更多
关键词 X100 steel flow rate oilfield produced water corrosion behavior COMSOL simulation
下载PDF
Treatment of ASP produced water with hydrophilic fibre ball filtration
14
作者 刘书孟 张振家 蒋明虎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第6期837-841,共5页
The conventional treatment process cannot meet the need for treatment of produced water from alka- line/surfactant/polymer flooding( ASP produced water) in Daqing oilfield. In this study, a new type of hydro- philic... The conventional treatment process cannot meet the need for treatment of produced water from alka- line/surfactant/polymer flooding( ASP produced water) in Daqing oilfield. In this study, a new type of hydro- philic fibre ball medium was developed through surface modification method. The hydrophilic property of the surface modified fibre ball was tested with ASP produced liquid at laboratory. The results showed that this fibre hall had higher oll degreasing efficiency, The surface components were also observed by Scanning Electron Microscope and X-ray Photoelectron Spectroscopy, the result showed that the hydrophilic fibre' s surface was covered by sulfonic group. Using hydrophilic fibre ball as filter medium, a new type of filter was designed to treat ASP produced water in pilot-scale experiments. The obtained results indicated that this type of filter had high capability and efficiency for the treatment of ASP produced water. This filter should have a better application prospect in oilfield produced water treatment. 展开更多
关键词 ASP flooding produced water hydrophilic fibre ball ADSORPTION FILTRATION
下载PDF
Effects of the Produced Water from a Sour Oilfield in South Kuwait on the Production Tubing
15
作者 Feras Al Salem Vijo Poulose +3 位作者 Kazuyuki Kawamura Arata Nakamura Hakim Saibi Thies Thiemann 《Journal of Water Resource and Protection》 2023年第7期358-375,共18页
Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the ... Kuwaiti oil production faces a growing challenge in the increasing quantities of produced water generated in the production of oil. The high water cut of the produced fluid from the wells and the high salinity of the produced water lead to significant degradation of subsurface equipment, specifically the production tubing. Debris generated through the degradation of the inner part of the tubing becomes a constituent of the scaling that deposits in the tubing and blocks the flow of the production fluid, inducing higher maintenance costs. This paper looks at the characteristics of the scaling in regard to the produced water and outlines the economic impact of the produced water induced degradation of the tubing structure. 展开更多
关键词 produced water SCALING Production Tubing Corrosion SEM-EDS WD-XRF XPS
下载PDF
Review on the Estimating the Effective Way for Managing the Produced Water: Case Study
16
作者 Mohamed A. Kassab Ali E. Abbas +3 位作者 Iman Elgamal Basem M. Shawky Mahmoud F. Mubarak R. Hosny 《Open Journal of Modern Hydrology》 2021年第2期19-37,共19页
Water manufactured is the primary waste source in the oil and gas industry. Because of the rising amount of waste worldwide, the environmental effect of wastewater has become a primary environmental concern in recent ... Water manufactured is the primary waste source in the oil and gas industry. Because of the rising amount of waste worldwide, the environmental effect of wastewater has become a primary environmental concern in recent years. The vast amounts involved have resulted in considerable costs to the industry for handling produced water. This research explains the wide variety of choices for water management. This research’s first phase was water minimization techniques, consisting of three different applications made in three different wells (Well 1, Well 2 and Well 3) and water recycling and reuse by two techniques. In Well 1, Mechanical shut-off technique was applied using through tubing bridge plug and 5 m cement dumped above it to isolate the watered out zone;as per water oil ration plot the water cut is decreased from 100% to 4% and the production is increased from 0 to 400 bcpd. In Well 2, Chemical shut-off technique using a polymer called Brightwater has been used to block channeling through high permeability intervals after PLT log detected it, and the result was brilliant, the water cut decreased from 60% to 25%, also the oil production increase from 500 to 3000 bopd. In Well 3, downhole separator installed in it using workover (unfortunately, this technique is not applied in middle east till the moment so this application is taken from an oil field in Canada)and the result was perfect, the water cut decreased from 70% to 28%, also the oil production increase from 44 to 100 bopd. This study tried to clarify and compare the most widely used water management techniques using one of the Western Desert (W.D.) (enhanced for oil recovery, constructed wetland). 展开更多
关键词 produced water water Production Problem Management Techniques water Minimization Techniques Recycling and Reusing Technologies
下载PDF
Quantifying Corrosion Rate in Oil and Gas Wells by Measuring Alloying Constituents in Produced Water
17
作者 Joseph J. Puthuvelil Fayez A. Al Ammarie Awad H. Malki 《Journal of Materials Science and Chemical Engineering》 2024年第12期1-17,共17页
Most oil and gas wells worldwide are completed with low alloy carbon steel due to cost-effectiveness, despite its high susceptibility to corrosion. Corrosion in alloy steels occurs through galvanic or electrolytic rea... Most oil and gas wells worldwide are completed with low alloy carbon steel due to cost-effectiveness, despite its high susceptibility to corrosion. Corrosion in alloy steels occurs through galvanic or electrolytic reactions, resulting in the release of metallic ions. This release adversely affects the strength and integrity of production tubing. The current study focused on quantifying the amount of alloying constituents present in the produced waters of oil and gas wells using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to calculate the corrosion rate on the production tubing. Two types of alloy steel tubing, API 5CT T-95 and API 5CT J55, were selected. The wells were chosen based on sweet and sour production. The levels of ions present in the produced water—Nickel, Chromium, Manganese, Molybdenum, and Iron—were measured. Ion dissolution was converted to corrosion rate using the exposed area of the tubing and the water flow rate. The study concluded that a very high corrosion rate occurs in sweet wells completed with T-95 metallurgy, whereas the corrosion rate in sour gas producers is significantly less compared to sweet producers. For the oil wells, although they are sour producers, a very low corrosion rate was observed with API 5CT J55 metallurgy. Furthermore, the study revealed that quantifying the alloying constituents in produced water is key to developing suitable corrosion projection approaches, predicting the service life of production tubing in gas and oil wells and metallic structures, and guiding production engineers to make informed decisions and timely responses to corrosion threats before failure. 展开更多
关键词 produced water ICP-OES Ion Dissolution Alloy Steel Oil & Gas Wells Corrosion Rate Saturation Index
下载PDF
Microfiltration,ultrafiltration and nanofiltration as a post-treatment of biological treatment process with references to oil field produced water of Moran oilfield of Assam
18
作者 Amarjit Rajbongshi Subrata Borgohain Gogoi 《Petroleum Research》 EI 2024年第1期143-154,共12页
The selection of an apt technology for the treatment of Oilfield Produced Water(OFPW)depends mainly on the quality of OFPW and methods of pre-and post-treatment processes.The most challenging part of the OFPW treatmen... The selection of an apt technology for the treatment of Oilfield Produced Water(OFPW)depends mainly on the quality of OFPW and methods of pre-and post-treatment processes.The most challenging part of the OFPW treatment process is the removal of Suspended Solid(SS),Oil&Grease(O&G)and dissolved organics.SS and O&G pose an acute problem to the membrane filtration system by fouling the membrane surface which increases operation&maintenance costs and decreases the life of the membrane.Fouling of the membrane surface is mainly attributed to the presence of low molecular weight aromatic compounds and naphthenic acids in the suspended and dissolved organic compounds.Thus,the removal of these suspended and dissolved organic compounds before membrane filtration proffers a challenge to the researchers.In this research,bioremediation process has been applied to remove the organic compounds and the performance and fouling behaviour of hollow fibre Microfiltration(MF),Ultrafiltration(UF)and Nanofiltration(NF)membranes after the bioremediation process has been analyzed in detail.The level of toxicity was determined by comparing the pollutants with the safe discharge limit for disposal into the environment set by Central Pollution Control Board(CPCB),India.The research presents its novelty by using a hydrocarbon-degrading bacteria,Pseudomonas aeruginosa for the Reduction of Organic Loads(ROL)from OFPW of Moran oil field of Upper Assam as a pre-treatment to membrane filtration.The Total Sum Corrected Area(TSCA)method through chromatographic analyses was used for this.The organic loads removal from OFPW by the TSCA method was found to be 67-100%,100%and 100%after 7,14 and 21 days of bioremediation respectively.The major parameters in feed OFPW of Moran oil field were found to be pH(7.5-9.3),Total Dissolved Solid(TDS)(1.79-4.75)ppt,O&G(1.78-2.8)ppt,Salinity(2.94-6.98)ppt,Chloride(Cl^(-))(1.6-3.86)ppt,Bicarbonate(HCO_(3)^(-))(2.89-4.03)ppt.It was observed that the ranges of pollutants removal by NF was highest such as TDS(26-86%),salinity(81-86%),turbidity(78-94%),hardness(67-75%),O&G(96-99%),Cl^(-)(80-89%)and HCO_(3)^(-)(95-97%). 展开更多
关键词 Oilfield produced water Organic compounds Bioremediation Membrane filtration Membrane fouling
原文传递
A review on oilfield produced water and its treatment technologies
19
作者 Amarjit Rajbongshi Subrata Borgohain Gogoi 《Petroleum Research》 2024年第4期640-656,共17页
Owing to the soaring urge to meet the demand for oil and gas on different frontiers,its exploration all over the world is of paramount importance.Exploration and production of oil calls for handling a huge volume of a... Owing to the soaring urge to meet the demand for oil and gas on different frontiers,its exploration all over the world is of paramount importance.Exploration and production of oil calls for handling a huge volume of associated water,produced along with it,referred to as Oilfield Produced Water(OFPW).OFPW is considered a potential threat to the environment due to the presence of toxic constituents such as dissolved and dispersed oil compounds,dissolved formation minerals,production chemical com-pounds,production solids(formation,corrosion,scale,bacteria,waxes,and asphaltenes),dissolved gases.This review is intended to provide information on OFPW,its constituents,impact,and treatment tech-nologies of OFPW from various oilfields across the world.It presents a meticulous analysis of the scope of reusing OFPW instead of freshwater for various processes such as well drilling and completion,re-injection to the reservoir for pressure maintenance,and water flooding process for secondary recovery of crude oil.The reuse of OFPW can reduce the demand for fresh water and turn the wastewater into useable water resources after proper treatment.The paper provides rigorous information on the importance of developing an eco-friendly treatment process for the proper reuse and management of OFPW. 展开更多
关键词 HYDROCARBON Oilfield produced water CHARACTERISTIC IMPACT MANAGEMENT Treatment ENVIRONMENT
原文传递
Selective extraction of lithium from shale gas produced water using an aluminum-based adsorbent
20
作者 Ya'nan Pan Bin Ji +3 位作者 Wencai Zhang Yang Xia Qi Li Bhavin Rena 《Green and Smart Mining Engineering》 2024年第2期208-219,共12页
Two-dimensional layered aluminum-based adsorbents have been developed and successfully applied to enrich low-concentration lithium from shale gas produced water.The adsorbent,synthesized with a lithium-to-aluminum mol... Two-dimensional layered aluminum-based adsorbents have been developed and successfully applied to enrich low-concentration lithium from shale gas produced water.The adsorbent,synthesized with a lithium-to-aluminum molar ratio of 0.6 in the salt solution,demonstrated exceptional performance characteristics.Its structure,featuring nano-encapsulated layers,facilitated lithium insertion,enhanced the surface area,and optimized pore size distribution for efficient adsorption.The adsorption equilibrium was reached within 60 min,closely aligning with the pseudo-second-order model.The isotherm analysis,based on the Sips model,suggested a nonhomogeneous multilayer adsorption process.Additionally,the adsorbent showed exceptional selectivity for Li^(+)over Na^(+),Ca^(2+),and Mg^(2+),ensuring effective lithium enrichment.Further desorption studies indicated that optimal conditions involved using deionized water at 333 K with a liquid-to-solid ratio of 80 mL/g.The adsorbent maintained robust performance and structural integrity through five adsorption-desorption cycles,highlighting its potential for recyclability and practical application in lithium recovery.These developments represent significant progress in harnessing lithium resources from shale gas produced water,thereby supporting advancements in clean energy technologies. 展开更多
关键词 Shale gas produced water Lithium recovery Aluminum-based adsorbent Cyclic stability Column experiments
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部