The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes ...Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes towards efficient production of solar fuels and chemicals.In this work,a facile one‐pot oil bath method has been proposed to fabricate a noble metal‐free ultrathin Ni‐doped ZnIn_(2)S_(4)(ZIS/Ni)composite nanosheet for effective solar‐driven selective dehydrocoupling of benzyl alcohol into value‐added C–C coupled hydrobenzoin and H_(2) fuel,which exhibits higher performance than pure ZIS nanosheet.The remarkably improved photoredox activity of ZIS/Ni is mainly attributed to the optimized electron structure featuring narrower band gap and suitable energy band position,which facilitates the ability of light harvesting and photoexcited charge carrier separation and transfer.Furthermore,it has been demonstrated that it is feasible to employ ZIS/Ni for various aromatic alcohols dehydrocoupling to the corresponding C–C coupled products.It is expected that this work can stimulate further interest on the establishment of innovative photocatalytic redox platform coupling clean solar fuels synthesis and selective organic conversion in a sustainable manner.展开更多
Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets ...Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets on Ti mesh(Ni doped Co_(3)S_(4) HNS/TM)were successfully prepared by using metal organic framework(MOF)as precursor which was synthesized under ambient condition.Characterization results confirmed this structure and Ni incorporation into Co_(3)S_(4) lattice as well as the modified electronic structure of Co_(3)S_(4) by Ni doping.Alkaline HER performance showed that Ni doped Co_(3)S_(4) HNS/TM presented outstanding HER activity with 173 m V overpotential at-10 m A·cm^(-2),surpassing most of metal sulfide-based electrocatalysts.The hierarchical structure,superior electrical conductivity and electronic structure modulation contributed to the accelerated water dissociation and enhanced intrinsic activity.This work provides a new avenue for synthesizing hierarchical nanostructure and simultaneously tuning the electronic structure to promote HER performance,which has potential application in designing highly efficient and cost-effective HER nanostructured electrocatalyst.展开更多
Photocatalytic production of hydrogen peroxide(H_(2)O_(2))is an ideal pathway for obtaining solar fuels.Herein,an S-scheme heterojunction is constructed in hybrid TiO_(2)/In_(2)S_(3)photocatalyst,which greatly promote...Photocatalytic production of hydrogen peroxide(H_(2)O_(2))is an ideal pathway for obtaining solar fuels.Herein,an S-scheme heterojunction is constructed in hybrid TiO_(2)/In_(2)S_(3)photocatalyst,which greatly promotes the separation of photogenerated carriers to foster efficient H_(2)O_(2)evolution.These composite photocatalysts show a high H_(2)O_(2)yield of 376μmol/(L·h).The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments.Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO_(2)/In_(2)S_(3)hybrids and demonstrate charge transfer mechanisms.The density functional theory calculation and electron paramagnetic resonance results suggest that O_(2)reduction to H_(2)O_(2)follows stepwise one-electron processes.In_(2)S_(3)shows a much stronger interaction with O_(2)than TiO_(2)as well as a higher reduction ability,serving as the active sites for H_(2)O_(2)generation.The work provides a novel design of S-scheme photocatalyst with high H_(2)O_(2)evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.展开更多
Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previou...Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.展开更多
Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(...Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(2)S_(3)/WO_(3)S-scheme heterojunction photocatalyst obtained by depositing WO_(3)quantum dots(QDs)onto hierarchical In_(2)S_(3)microflowers.The In_(2)S_(3)/WO_(3)composite exhibits outstanding visible light absorption,with a maximum optical response of up to 600 nm.The electronic interaction and charge separation at interfaces are explored by in situ X-ray photoelectron spectroscopy(XPS)and density func-tional theory(DFT)calculations.The difference in work function causes In_(2)S_(3)to donate electrons to WO_(3)upon combination,leading to the formation of an internal electric field(IEF)at the interfaces.Due to the IEF and bent energy bands,the transfer and separation of photogenerated charge carriers follow an S-scheme pathway within In_(2)S_(3)/WO_(3).Owing to the strong redox ability,spatial charge separation and lower H 2-generation barrier of S active sites,the optimized In_(2)S_(3)/WO_(3)heterojunctions show enhanced photocatalytic hydrogen evolution of 0.39 mmol h^(-1)g^(-1),6.7 times that of pristine In_(2)S_(3).In addition,the In_(2)S_(3)/WO_(3)S-scheme heterojunctions afford a remarkable activity for photocatalytic nitrobenzene hydro-genation with nearly 98%conversion and 99%selectivity of aniline within 1 h.Our work might present new insights into developing efficient S-scheme heterojunctions for various photocatalytic applications.展开更多
Construction of metal-organic-frame works-based composite photocatalysts has attracted much attention for the reasonable band gap and high surface areas to improve the photocatalytic activity.In this study,the ternary...Construction of metal-organic-frame works-based composite photocatalysts has attracted much attention for the reasonable band gap and high surface areas to improve the photocatalytic activity.In this study,the ternary heterojunction Pd@UiO-66-NH_(2)@ZnIn_(2)S_(4)nanocomposites were facilely prepared for the first time by a two-step method.The visible-light-promoted hydrogen production rate of 0.3%Pd@UiO-66-NH_(2)@ZnIn_(2)S_(4)reaches up to 5.26 mmol g^(-1)h^(-1),which is evidently much higher than pure UiO-66-NH_(2),ZnIn_(2)S_(4)and binary UiO-66-NH_(2)/ZnIn_(2)S_(4)composites.Such a huge improvement in the photocatalytic performance is mainly attributed to the matched band gap of ZnIn_(2)S_(4)and UiO-66-NH_(2),and the introduction of Pd NPs into photocatalysts that broaden spectral response range and promote the photon induced charge carrier separation.This work may provide a feasible approach for the design and construction of metal-organic-frameworks-based photocatalytic materials.展开更多
To obtain a high-performance heterogeneous photo-catalyst, herein, the hetero-structured Zn In_(2)S_(4)-Ni O@MOF(ZNM) nano-sheets are designed and prepared by partial pyrolysis of nickel-based MOFs(NiMOF) combined wit...To obtain a high-performance heterogeneous photo-catalyst, herein, the hetero-structured Zn In_(2)S_(4)-Ni O@MOF(ZNM) nano-sheets are designed and prepared by partial pyrolysis of nickel-based MOFs(NiMOF) combined with the low-temperature solvo-thermal method. The results indicate that the NiO nanoparticles, produced by partial pyrolysis of the Ni-MOF, have a high density of the surface active sites with limited aggregation, which act as a co-catalyst to capture photo-induced charge carriers. In addition, the morphology and structure of Ni-MOF nano-sheets were preserved in ZNM, which is beneficial to the reduction of the conduction barrier for the photo generated electron-hole pairs. With the synergetic advantages of co-catalyst and unique two-dimensional hetero-structure, ZNM nano-sheets exhibited significantly improved activity for photo-catalytic hydrogen production.展开更多
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
文摘Integrating selective organic synthesis with hydrogen(H_(2))evolution in one photocatalytic redox reaction system sheds light on the underlying approach for concurrent employment of photogenerated electrons and holes towards efficient production of solar fuels and chemicals.In this work,a facile one‐pot oil bath method has been proposed to fabricate a noble metal‐free ultrathin Ni‐doped ZnIn_(2)S_(4)(ZIS/Ni)composite nanosheet for effective solar‐driven selective dehydrocoupling of benzyl alcohol into value‐added C–C coupled hydrobenzoin and H_(2) fuel,which exhibits higher performance than pure ZIS nanosheet.The remarkably improved photoredox activity of ZIS/Ni is mainly attributed to the optimized electron structure featuring narrower band gap and suitable energy band position,which facilitates the ability of light harvesting and photoexcited charge carrier separation and transfer.Furthermore,it has been demonstrated that it is feasible to employ ZIS/Ni for various aromatic alcohols dehydrocoupling to the corresponding C–C coupled products.It is expected that this work can stimulate further interest on the establishment of innovative photocatalytic redox platform coupling clean solar fuels synthesis and selective organic conversion in a sustainable manner.
基金funded by National Natural Science Foundation of China(Nos.21906008 and 51571076)Open Project of State Key Laboratory of Urban Water Resource and Environment of Har-bin Institute of Technology(No.HCK201716)+1 种基金Chongqing Basic and Frontier Research Program(cstc2018jcyjAX0774)Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJQN201901420 and KJQN202001413).
文摘Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets on Ti mesh(Ni doped Co_(3)S_(4) HNS/TM)were successfully prepared by using metal organic framework(MOF)as precursor which was synthesized under ambient condition.Characterization results confirmed this structure and Ni incorporation into Co_(3)S_(4) lattice as well as the modified electronic structure of Co_(3)S_(4) by Ni doping.Alkaline HER performance showed that Ni doped Co_(3)S_(4) HNS/TM presented outstanding HER activity with 173 m V overpotential at-10 m A·cm^(-2),surpassing most of metal sulfide-based electrocatalysts.The hierarchical structure,superior electrical conductivity and electronic structure modulation contributed to the accelerated water dissociation and enhanced intrinsic activity.This work provides a new avenue for synthesizing hierarchical nanostructure and simultaneously tuning the electronic structure to promote HER performance,which has potential application in designing highly efficient and cost-effective HER nanostructured electrocatalyst.
基金supported by the National Natural Science Foundation of China(Nos.52073223,51932007,51961135303,21871217,U1905215 and U1705251).
文摘Photocatalytic production of hydrogen peroxide(H_(2)O_(2))is an ideal pathway for obtaining solar fuels.Herein,an S-scheme heterojunction is constructed in hybrid TiO_(2)/In_(2)S_(3)photocatalyst,which greatly promotes the separation of photogenerated carriers to foster efficient H_(2)O_(2)evolution.These composite photocatalysts show a high H_(2)O_(2)yield of 376μmol/(L·h).The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments.Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO_(2)/In_(2)S_(3)hybrids and demonstrate charge transfer mechanisms.The density functional theory calculation and electron paramagnetic resonance results suggest that O_(2)reduction to H_(2)O_(2)follows stepwise one-electron processes.In_(2)S_(3)shows a much stronger interaction with O_(2)than TiO_(2)as well as a higher reduction ability,serving as the active sites for H_(2)O_(2)generation.The work provides a novel design of S-scheme photocatalyst with high H_(2)O_(2)evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.
基金supported by the National Natural Science Foundation of China(22279052)the China Postdoctoral Science Foundation(2023M741613)。
文摘Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.
基金funded by the Opening Project of Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention(LAP 3)(No.FDLAP21008)the Hubei Provincial Natural Science Foundation of China(No.2020CFB785)+1 种基金the Science and Tech-nology Research Project of the Education Department of Hubei Province(No.D20191703)the Project of Hubei Key Labora-tory of Biomass Fibers and Eco-dyeing&Finishing(WTU)(Nos.STRZ202219,STRZ202220).
文摘Solar energy conversion and high-value chemical production are of utmost importance.However,the de-velopment of efficient photocatalysts with strong redox ability remains challenging.Here we report a unique 3D/0D In_(2)S_(3)/WO_(3)S-scheme heterojunction photocatalyst obtained by depositing WO_(3)quantum dots(QDs)onto hierarchical In_(2)S_(3)microflowers.The In_(2)S_(3)/WO_(3)composite exhibits outstanding visible light absorption,with a maximum optical response of up to 600 nm.The electronic interaction and charge separation at interfaces are explored by in situ X-ray photoelectron spectroscopy(XPS)and density func-tional theory(DFT)calculations.The difference in work function causes In_(2)S_(3)to donate electrons to WO_(3)upon combination,leading to the formation of an internal electric field(IEF)at the interfaces.Due to the IEF and bent energy bands,the transfer and separation of photogenerated charge carriers follow an S-scheme pathway within In_(2)S_(3)/WO_(3).Owing to the strong redox ability,spatial charge separation and lower H 2-generation barrier of S active sites,the optimized In_(2)S_(3)/WO_(3)heterojunctions show enhanced photocatalytic hydrogen evolution of 0.39 mmol h^(-1)g^(-1),6.7 times that of pristine In_(2)S_(3).In addition,the In_(2)S_(3)/WO_(3)S-scheme heterojunctions afford a remarkable activity for photocatalytic nitrobenzene hydro-genation with nearly 98%conversion and 99%selectivity of aniline within 1 h.Our work might present new insights into developing efficient S-scheme heterojunctions for various photocatalytic applications.
基金the Natural Science Foundation of Shanghai(No.19ZR1403500)the National Natural Science Foundation of China(No.21373054)the Natural Science Foundation of Shanghai Science and Technology Committee(No.19DZ2270100)。
文摘Construction of metal-organic-frame works-based composite photocatalysts has attracted much attention for the reasonable band gap and high surface areas to improve the photocatalytic activity.In this study,the ternary heterojunction Pd@UiO-66-NH_(2)@ZnIn_(2)S_(4)nanocomposites were facilely prepared for the first time by a two-step method.The visible-light-promoted hydrogen production rate of 0.3%Pd@UiO-66-NH_(2)@ZnIn_(2)S_(4)reaches up to 5.26 mmol g^(-1)h^(-1),which is evidently much higher than pure UiO-66-NH_(2),ZnIn_(2)S_(4)and binary UiO-66-NH_(2)/ZnIn_(2)S_(4)composites.Such a huge improvement in the photocatalytic performance is mainly attributed to the matched band gap of ZnIn_(2)S_(4)and UiO-66-NH_(2),and the introduction of Pd NPs into photocatalysts that broaden spectral response range and promote the photon induced charge carrier separation.This work may provide a feasible approach for the design and construction of metal-organic-frameworks-based photocatalytic materials.
基金supported by the Outstanding Youth Fund of Heilongjiang Province (JQ 2020B002)Guangxi Science and Technology Base and Talent Special Project (AD21075001)the Reform and Development Fund Project of Local University supported by the Central Government。
基金support of National Science Foundation of China (Nos.91963207 and 12075174)。
文摘To obtain a high-performance heterogeneous photo-catalyst, herein, the hetero-structured Zn In_(2)S_(4)-Ni O@MOF(ZNM) nano-sheets are designed and prepared by partial pyrolysis of nickel-based MOFs(NiMOF) combined with the low-temperature solvo-thermal method. The results indicate that the NiO nanoparticles, produced by partial pyrolysis of the Ni-MOF, have a high density of the surface active sites with limited aggregation, which act as a co-catalyst to capture photo-induced charge carriers. In addition, the morphology and structure of Ni-MOF nano-sheets were preserved in ZNM, which is beneficial to the reduction of the conduction barrier for the photo generated electron-hole pairs. With the synergetic advantages of co-catalyst and unique two-dimensional hetero-structure, ZNM nano-sheets exhibited significantly improved activity for photo-catalytic hydrogen production.