This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti...This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.展开更多
Contamination between batches in multi-products pipeline transport is studied. The influences of convection and diffusion on the contamination are studied in detail. Diffusion equations, which are mainly controlled by...Contamination between batches in multi-products pipeline transport is studied. The influences of convection and diffusion on the contamination are studied in detail. Diffusion equations, which are mainly controlled by convection, are developed under turbulent pipe flow. The diffusion equation is separated into a pure convection equation and a pure diffusion equation which are solved by characteristics method and finite difference method respectively to obtain numerical solutions. The results of numerical computation explain the forming and developing of contamination very well.展开更多
针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-obj...针对可重入制造系统多具有多品种、大规模、混流生产等特点,构建带批处理机的可重入混合流水车间调度问题(reentrant hybrid flow shop scheduling problem with batch processors,BPRHFSP)模型,提出一种改进的多目标蜉蝣算法(multi-objective mayfly algorithm,MOMA)进行求解。提出了单件加工阶段和批处理阶段的解码规则;设计了基于Logistic混沌映射的反向学习初始化策略、改进的蜉蝣交配和变异策略,提高了算法初始解的质量和局部搜索能力;根据编码规则设计了基于变邻域下降搜索的蜉蝣运动策略,优化了种群方向。通过对不同规模大量测试算例的仿真实验,验证了MOMA相比传统算法求解BP-RHFSP更具有效性和优越性。所提出的模型能够反映生产的基础特征,达到减少最大完工时间、机器负载和碳排放的目的。展开更多
美罗培南是一种新型碳青霉烯类抗生素,具有广阔的市场前景,其生产过程为间歇生产。文章利用Aspen Batch Process Developer 7.2对年产25吨的美罗培南原料药生产工艺流程进行模拟,得到生产过程中的物料衡算结果误差为0.8%,生产时间甘德...美罗培南是一种新型碳青霉烯类抗生素,具有广阔的市场前景,其生产过程为间歇生产。文章利用Aspen Batch Process Developer 7.2对年产25吨的美罗培南原料药生产工艺流程进行模拟,得到生产过程中的物料衡算结果误差为0.8%,生产时间甘德图表明,生产周期为48小时,并得到该生产过程的公用工程消耗量,对实际的工艺设计具有一定的参考价值。展开更多
基金Thailand Research Fund (Grant #MRG5480176)National Research University Project of Thailand Office of Higher Education Commission
文摘This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time.
文摘Contamination between batches in multi-products pipeline transport is studied. The influences of convection and diffusion on the contamination are studied in detail. Diffusion equations, which are mainly controlled by convection, are developed under turbulent pipe flow. The diffusion equation is separated into a pure convection equation and a pure diffusion equation which are solved by characteristics method and finite difference method respectively to obtain numerical solutions. The results of numerical computation explain the forming and developing of contamination very well.
文摘美罗培南是一种新型碳青霉烯类抗生素,具有广阔的市场前景,其生产过程为间歇生产。文章利用Aspen Batch Process Developer 7.2对年产25吨的美罗培南原料药生产工艺流程进行模拟,得到生产过程中的物料衡算结果误差为0.8%,生产时间甘德图表明,生产周期为48小时,并得到该生产过程的公用工程消耗量,对实际的工艺设计具有一定的参考价值。