The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when co...The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.展开更多
Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne...Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
A second-generation fast Non-dominated Sorting Genetic Algorithm product shape multi-objective imagery optimization model based on degradation(DNSGA-II)strategy is proposed to make the product appearance optimization ...A second-generation fast Non-dominated Sorting Genetic Algorithm product shape multi-objective imagery optimization model based on degradation(DNSGA-II)strategy is proposed to make the product appearance optimization scheme meet the complex emotional needs of users for the product.First,the semantic differential method and K-Means cluster analysis are applied to extract the multi-objective imagery of users;then,the product multidimensional scale analysis is applied to classify the research objects,and again the reference samples are screened by the semantic differentialmethod,and the samples are parametrized in two dimensions by using elliptic Fourier analysis;finally,the fuzzy dynamic evaluation function is used as the objective function of the algorithm,and the coordinates of key points of product contours Finally,with the fuzzy dynamic evaluation function as the objective function of the algorithm and the coordinates of key points of the product profile as the decision variables,the optimal product profile solution set is solved by DNSGA-II.The validity of the model is verified by taking the optimization of the shape scheme of the hospital connection site as an example.For comparison with DNSGA-II,other multi-objective optimization algorithms are also presented.To evaluate the performance of each algorithm,the performance evaluation index values of the five multi-objective optimization algorithms are calculated in this paper.The results show that DNSGA-II is superior in improving individual diversity and has better overall performance.展开更多
Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summariza...Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.展开更多
The development of an efficient artificial H_(2)O_(2)photosynthesis system is a challenging work using H_(2)O and O_(2)as starting materials.Herein,3D In2.77S_(4)nanoflower precursor was in-situ deposited on K^(+)-dop...The development of an efficient artificial H_(2)O_(2)photosynthesis system is a challenging work using H_(2)O and O_(2)as starting materials.Herein,3D In2.77S_(4)nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In2.77S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2)production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In2.77S_(4),respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In2.77S_(4)according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2)production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2)around the active centers,the energy barriers of O_(2)protonation and H_(2)O_(2)desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2)photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
To achieve online automatic classification of product is a great need of e-commerce de-velopment. By analyzing the characteristics of product images, we proposed a fast supervised image classifier which is based on cl...To achieve online automatic classification of product is a great need of e-commerce de-velopment. By analyzing the characteristics of product images, we proposed a fast supervised image classifier which is based on class-specific Pyramid Histogram Of Words (PHOW) descriptor and Im-age-to-Class distance (PHOW/I2C). In the training phase, the local features are densely sampled and represented as soft-voting PHOW descriptors, and then the class-specific descriptors are built with the means and variances of distribution of each visual word in each labelled class. For online testing, the normalized chi-square distance is calculated between the descriptor of query image and each class-specific descriptor. The class label corresponding to the least I2C distance is taken as the final winner. Experiments demonstrate the effectiveness and quickness of our method in the tasks of product clas-sification.展开更多
Brand building of agricultural products is the key for agricultural enterprises to gain competitive advantage and occupy the market. Guizhou province is rich in green agricultural products resources and has superior n...Brand building of agricultural products is the key for agricultural enterprises to gain competitive advantage and occupy the market. Guizhou province is rich in green agricultural products resources and has superior natural resources, but it is at a disadvantage in the market competition. The constraint factor is that the brand is not enough to obtain consumer trust. In order to provide countermeasures and suggestions for Guizhou provincial government and agricultural enterprises to shape green agricultural products brand, this paper explores the influence path of country-of-origin image of Guizhou province on brand trust of green agricultural products. Therefore, based on the theory of Country-of-origin effects this study conducts an empirical research. Taking the country-of-origin image, including natural conditions,technological conditions, brand supervision norms, technology input, government marketing promotion and government policies as antecedent variables, and green agricultural brand trust, including brand competence trust and brand quality trust as dependent variables, the structural equation model was constructed. Through data collection and empirical analysis by using structural equation model, this study found that natural conditions have a positive impact on brand competence trust, and technical conditions have a positive impact on brand quality trust. The brand supervision norms, technology input, government marketing promotion and government policy will all promote consumers to have a positive impact on brand trust in green agricultural products.展开更多
Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall...Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall data is available at various important locations in and around Delhi-NCR.However,the 24-hour rainfall data observed by Doppler Weather Radar(DWR)for entire Delhi and surrounding region(up to 150 km)is readily available in a pictorial form.In this paper,efforts have been made to derive/estimate the rainfall at desired locations using DWR hydrological products.Firstly,the rainfall at desired locations has been estimated from the precipitation accumulation product(PAC)of the DWR using image processing in Python language.After this,a linear regression model using the least square method has been developed in R language.Estimated and observed rainfall data of year 2018(July,August and September)was used to train the model.After this,the model was tested on rainfall data of year 2019(July,August and September)and validated.With the use of linear regression model,the error in mean rainfall estimation reduced by 46.58% and the error in max rainfall estimation reduced by 84.53% for the year 2019.The error in mean rainfall estimation reduced by 81.36% and the error in max rainfall estimation reduced by 33.81%for the year 2018.Thus,the rainfall can be estimated with a fair degree of accuracy at desired locations within the range of the Doppler Weather Radar using the radar rainfall products and the developed linear regression model.展开更多
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl...Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3.展开更多
This paper discusses the influence of the country-of-origin image, product knowledge and product involvement on consumer purchase decisions. Data were collected by a questionnaire from college students. Multiple regre...This paper discusses the influence of the country-of-origin image, product knowledge and product involvement on consumer purchase decisions. Data were collected by a questionnaire from college students. Multiple regression analysis of data from 379 respondents was used to test three hypotheses. The results show that the country-of-origin image, product knowledge and product involvement all have a significantly positive effect on consumer purchase decision. Further research should examine the different dimensions of involvement and product knowledge on consumer purchase decisions展开更多
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to t...In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.展开更多
This article examines transnational collaboration in the production of Mandela's biopics and what it means for Mandela's self-image, for South African history, and for the globalization of human experience. The film...This article examines transnational collaboration in the production of Mandela's biopics and what it means for Mandela's self-image, for South African history, and for the globalization of human experience. The films covered in this discussion include: Mandela (1987), Sarafina (1992), Mandela and de Klerk (1997), Goodbye Bafana (2007), Endgame (2009), and Invictus (2010). The article examines the portrayals of Mandela as a lover, action hero, conciliator, and as a symbol of the anti-apartheid liberation struggle, and then focuses on Invictus, Clint Eastwood's adaptation of Carlin's book, Playing the Enemy to show the degree to which Mandela is incarnated on screen through Morgan Freeman's stunning performance while at the same time underscoring the dangers of Euro-American cultural production of Mandela's image. While Carlin's book employs reminiscences, flashbacks, and shifting chronology to expose the injustice, oppression and brutality that the Springboks symbolized, the film instead focuses on magnifying Mandela's image and charm at the expense of South African history, leading to the misrepresentation of Mandela: the "heroic self-transcendence" typical of Hollywood's shallow treatment of historical material for commercial and cultural expediency.展开更多
Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope...Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope towards the future life, but both make wrong choices; in the following years, both suffer a lot from these wrong choices, and feel regretful. This paper tries to explore these two tragic female images.展开更多
After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The s...After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The slogan of Wunvfeng National Forest Park had been identified as "tour of nature and mythology-Wunvfeng", and the park's emblem, symbolic mascots, spokesman of tourism image and tourist souvenirs had been set, so as to better display tourist advantages of Wunvfeng National Forest Park and create more economic and social benefits.展开更多
基金Institutional Fund Projects under Grant No.(IFPIP:638-830-1443).
文摘The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.
文摘Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
基金supported by National Natural Science Foundation Grant 52065010the Science and Technology Project supported by Guizhou Province of China ZK[2021]341 and[2021]397the transformation Project of Scientific and Technological Achievements in Guiyang,Guizhou Province,China[2021]7-3.
文摘A second-generation fast Non-dominated Sorting Genetic Algorithm product shape multi-objective imagery optimization model based on degradation(DNSGA-II)strategy is proposed to make the product appearance optimization scheme meet the complex emotional needs of users for the product.First,the semantic differential method and K-Means cluster analysis are applied to extract the multi-objective imagery of users;then,the product multidimensional scale analysis is applied to classify the research objects,and again the reference samples are screened by the semantic differentialmethod,and the samples are parametrized in two dimensions by using elliptic Fourier analysis;finally,the fuzzy dynamic evaluation function is used as the objective function of the algorithm,and the coordinates of key points of product contours Finally,with the fuzzy dynamic evaluation function as the objective function of the algorithm and the coordinates of key points of the product profile as the decision variables,the optimal product profile solution set is solved by DNSGA-II.The validity of the model is verified by taking the optimization of the shape scheme of the hospital connection site as an example.For comparison with DNSGA-II,other multi-objective optimization algorithms are also presented.To evaluate the performance of each algorithm,the performance evaluation index values of the five multi-objective optimization algorithms are calculated in this paper.The results show that DNSGA-II is superior in improving individual diversity and has better overall performance.
基金The National Natural Science Foundation of China(No.61133012)the Humanity and Social Science Foundation of the Ministry of Education(No.12YJCZH274)+1 种基金the Humanity and Social Science Foundation of Jiangxi Province(No.XW1502,TQ1503)the Science and Technology Project of Jiangxi Science and Technology Department(No.20121BBG70050,20142BBG70011)
文摘Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.
文摘The development of an efficient artificial H_(2)O_(2)photosynthesis system is a challenging work using H_(2)O and O_(2)as starting materials.Herein,3D In2.77S_(4)nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In2.77S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2)production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In2.77S_(4),respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In2.77S_(4)according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2)production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2)around the active centers,the energy barriers of O_(2)protonation and H_(2)O_(2)desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2)photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
基金Supported by the Major Funded Project of National Natural Science Foundation of China (No. 70890083)
文摘To achieve online automatic classification of product is a great need of e-commerce de-velopment. By analyzing the characteristics of product images, we proposed a fast supervised image classifier which is based on class-specific Pyramid Histogram Of Words (PHOW) descriptor and Im-age-to-Class distance (PHOW/I2C). In the training phase, the local features are densely sampled and represented as soft-voting PHOW descriptors, and then the class-specific descriptors are built with the means and variances of distribution of each visual word in each labelled class. For online testing, the normalized chi-square distance is calculated between the descriptor of query image and each class-specific descriptor. The class label corresponding to the least I2C distance is taken as the final winner. Experiments demonstrate the effectiveness and quickness of our method in the tasks of product clas-sification.
文摘Brand building of agricultural products is the key for agricultural enterprises to gain competitive advantage and occupy the market. Guizhou province is rich in green agricultural products resources and has superior natural resources, but it is at a disadvantage in the market competition. The constraint factor is that the brand is not enough to obtain consumer trust. In order to provide countermeasures and suggestions for Guizhou provincial government and agricultural enterprises to shape green agricultural products brand, this paper explores the influence path of country-of-origin image of Guizhou province on brand trust of green agricultural products. Therefore, based on the theory of Country-of-origin effects this study conducts an empirical research. Taking the country-of-origin image, including natural conditions,technological conditions, brand supervision norms, technology input, government marketing promotion and government policies as antecedent variables, and green agricultural brand trust, including brand competence trust and brand quality trust as dependent variables, the structural equation model was constructed. Through data collection and empirical analysis by using structural equation model, this study found that natural conditions have a positive impact on brand competence trust, and technical conditions have a positive impact on brand quality trust. The brand supervision norms, technology input, government marketing promotion and government policy will all promote consumers to have a positive impact on brand trust in green agricultural products.
文摘Observed rainfall is a very essential parameter for the analysis of rainfall,day to day weather forecast and its validation.The observed rainfall data is only available from five observatories of IMD;while no rainfall data is available at various important locations in and around Delhi-NCR.However,the 24-hour rainfall data observed by Doppler Weather Radar(DWR)for entire Delhi and surrounding region(up to 150 km)is readily available in a pictorial form.In this paper,efforts have been made to derive/estimate the rainfall at desired locations using DWR hydrological products.Firstly,the rainfall at desired locations has been estimated from the precipitation accumulation product(PAC)of the DWR using image processing in Python language.After this,a linear regression model using the least square method has been developed in R language.Estimated and observed rainfall data of year 2018(July,August and September)was used to train the model.After this,the model was tested on rainfall data of year 2019(July,August and September)and validated.With the use of linear regression model,the error in mean rainfall estimation reduced by 46.58% and the error in max rainfall estimation reduced by 84.53% for the year 2019.The error in mean rainfall estimation reduced by 81.36% and the error in max rainfall estimation reduced by 33.81%for the year 2018.Thus,the rainfall can be estimated with a fair degree of accuracy at desired locations within the range of the Doppler Weather Radar using the radar rainfall products and the developed linear regression model.
基金Supported by the National Natural Science Foundation of China(60802061, 11426087) Supported by Key Project of Science and Technology of the Education Department Henan Province(14A120009)+1 种基金 Supported by the Program of Henan Province Young Scholar(2013GGJS-027) Supported by the Research Foundation of Henan University(2013YBZR016)
文摘Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3.
文摘This paper discusses the influence of the country-of-origin image, product knowledge and product involvement on consumer purchase decisions. Data were collected by a questionnaire from college students. Multiple regression analysis of data from 379 respondents was used to test three hypotheses. The results show that the country-of-origin image, product knowledge and product involvement all have a significantly positive effect on consumer purchase decision. Further research should examine the different dimensions of involvement and product knowledge on consumer purchase decisions
基金Supported by the Major Program of National Natural Science Foundation of China (No. 70890080 and No. 70890083)
文摘In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi-crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
文摘This article examines transnational collaboration in the production of Mandela's biopics and what it means for Mandela's self-image, for South African history, and for the globalization of human experience. The films covered in this discussion include: Mandela (1987), Sarafina (1992), Mandela and de Klerk (1997), Goodbye Bafana (2007), Endgame (2009), and Invictus (2010). The article examines the portrayals of Mandela as a lover, action hero, conciliator, and as a symbol of the anti-apartheid liberation struggle, and then focuses on Invictus, Clint Eastwood's adaptation of Carlin's book, Playing the Enemy to show the degree to which Mandela is incarnated on screen through Morgan Freeman's stunning performance while at the same time underscoring the dangers of Euro-American cultural production of Mandela's image. While Carlin's book employs reminiscences, flashbacks, and shifting chronology to expose the injustice, oppression and brutality that the Springboks symbolized, the film instead focuses on magnifying Mandela's image and charm at the expense of South African history, leading to the misrepresentation of Mandela: the "heroic self-transcendence" typical of Hollywood's shallow treatment of historical material for commercial and cultural expediency.
文摘Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope towards the future life, but both make wrong choices; in the following years, both suffer a lot from these wrong choices, and feel regretful. This paper tries to explore these two tragic female images.
文摘After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The slogan of Wunvfeng National Forest Park had been identified as "tour of nature and mythology-Wunvfeng", and the park's emblem, symbolic mascots, spokesman of tourism image and tourist souvenirs had been set, so as to better display tourist advantages of Wunvfeng National Forest Park and create more economic and social benefits.