期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Meteorological Prediction Model of Lemon Production in Anyue County Based on Correlation
1
作者 Chen Haiyan Xiao Tiangui +2 位作者 Cai Guanghui Liu Yaxi Chen Xuedong 《Meteorological and Environmental Research》 CAS 2014年第11期52-55,共4页
Using the meteorological data during 1971- 2013 and lemon growth and yield data during 2003- 2013 in Anyue,the suitability problem of lemon growth and correlation problem between meteorological factors and lemon growt... Using the meteorological data during 1971- 2013 and lemon growth and yield data during 2003- 2013 in Anyue,the suitability problem of lemon growth and correlation problem between meteorological factors and lemon growth in Anyue area were studied. According to relevance between the selected meteorological factors and yield of lemon,meteorological prediction model of lemon yield was established in Anyue,and the prediction accuracy was higher. The research had certain guiding significance for management work of lemon production in Anyue area. 展开更多
关键词 Lemon production Meteorological prediction model Correlation Anyue area China
下载PDF
Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells
2
作者 Xinyu Zhao Mofeng Li +1 位作者 Kai Yan Li Yin 《Energy Engineering》 EI 2023年第12期2933-2949,共17页
This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal we... This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production. 展开更多
关键词 Tight reservoirs production prediction model stress effects fractured horizontal well
下载PDF
Subsection and superposition method for reservoir formation damage evaluation of complex-structure wells 被引量:1
3
作者 Guan-Cheng Jiang Yi-Zheng Li +3 位作者 Yin-Bo He Teng-Fei Dong Ke-Ming Sheng Zhe Sun 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1843-1856,共14页
Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of re... Kinds of complex-structure wells can effectively improve production,which are widely used.However,in the process of drilling and completion,complex-structure wells with long drilling cycle and large exposed area of reservoir can lead to the fact that reservoir near wellbore is more vulnerable to the working fluid invasion,resulting in more serious formation damage.In order to quantitatively describe the reservoir formation damage in the construction of complex-structure well,taking the inclined well section as the research object,the coordinate transformation method and conformal transformation method are given according to the flow characteristics of reservoir near wellbore in anisotropic reservoir.Then the local skin factor in orthogonal plane of wellbore is deduced.Considering the un-even distribution of local skin factor along the wellbore,the oscillation decreasing model and empirical equation model of damage zone radius distribution along the wellbore direction are established and then the total skin factor model of the whole well is superimposed to realize the reservoir damage evaluation of complex-structure wells.Combining the skin factor model with the production model,the production of complex-structure wells can be predicted more accurately.The two field application cases show that the accuracy of the model can be more than 90%,which can also fully reflect the invasion characteristics of drilling and completion fluid in any well section of complex-structure wells in anisotropic reservoir,so as to further provide guidance for the scientific establish-ment of reservoir production system. 展开更多
关键词 Complex-structure wells Reservoir formation damage Reservoir anisotropy Skin factor Production prediction model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部