Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure...Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.展开更多
The influence of binder composition and pore structure of concrete on chloride diffusion coefficient in concrete were investigated by the natural immersion test, MIP test, SEM and EDS test, respectively. The experimen...The influence of binder composition and pore structure of concrete on chloride diffusion coefficient in concrete were investigated by the natural immersion test, MIP test, SEM and EDS test, respectively. The experimental results showed that the effect of binder composition on chloride diffusion coefficient was the comprehensive result of concrete pore structure and binder hydration products, and the porosity and pore size distribution were the main factors that influence the changes of diffusion coefficient. The chloride diffusion coefficient decreased with increasing the curing temperature and the relative humidity. The hydration degree were promoted by improving curing temperatures, and then the porosity of concrete decreased and the proportion of gel pore and transitional pore increased, respectively. But the water evaporation decreased with increasing the relative humidity and then decreased porosity and increased the proportion of gel pore and transitional pore. Additionally, The chloride diffusion coefficient of concrete got the lower value when the appropriate replacement of fly ash in the ranges of 10%-20%, when the double-adding fly ash and slag content was 50%. The porosity increased and the ratio of C/S in C-S-H decreased with further increasing the fly ash content, which led to increase the chloride diffusion coefficient in concrete.展开更多
Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inex...Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.展开更多
This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameter...This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
In view of China's development trend of green building and building industrialization,based on the emerging requirements of the structural engineering community,the development and proposition of novel resourcesav...In view of China's development trend of green building and building industrialization,based on the emerging requirements of the structural engineering community,the development and proposition of novel resourcesaving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering.This paper provides a state of the art review of China's cutting-edge research and technologies in steel-concrete composite structures in recent years,including the building engineering,the bridge engineering and the special engineering.This paper summarizes the technical principles and applications of the long-span bi-directional composite structures,the long-span composite transfer structures,the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP)connectors,the steel plate concrete composite (SPCC)strengthen technique,and the innovative composite joints.By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited.The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.展开更多
In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability...In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces.展开更多
The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete...The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.展开更多
This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of m...This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of material, structural and technological foundations along the entire value chain are of central importance: From the light-weight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice. The development of the material included the requirement-oriented composition of a high-strength fine grained concrete with an integrated textile reinforcement, such as carbon knitted fabrics. Innovations in formwork solutions provide new possibilities for concrete constructions. So, a bionic optimized shape of the pavilion was developed, realized by four connected TRC-lightweight-shells. The thin-walled TRC-shells were manufactured with a formwork made of glass-fibre reinforced polymer (GFRP). An advantage of the GFRP-formwork is the freedom of design concerning the formwork shape. Moreover, an excellent concrete quality can be achieved, while the production of the precast concrete components is simple and efficient simultaneously. After the production the new TRC-shells were installed and assembled on the campus of TU-Chemnitz. A special feature of the research pavilions are the LED light strips integrated in the shell elements, providing homogeneous illumination.展开更多
In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, doe...In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.展开更多
A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sinteri...A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.展开更多
In order to study the feasibility of strengthening of segmental tunnel linings by using steel-concrete composites(SCC),a three-dimensional(3D)finite element(FE)model is proposed in this paper.The nonlinear mechanical ...In order to study the feasibility of strengthening of segmental tunnel linings by using steel-concrete composites(SCC),a three-dimensional(3D)finite element(FE)model is proposed in this paper.The nonlinear mechanical behavior of concrete is described by a plastic-damage model.The nonlinearity,resulting from the interface of the SCC and reinforced concrete(RC)segments,is simulated with the help of a system of springs.The analysis results are compared with those obtained from a full-scale test of a tunnel segment.Their agreement validates the usefulness of the 3D FE model.Numerical re-analysis of the test shows that the interfacial connectors govern both the strengthening effect of SCC and the failure pattern of the strengthened segments.Thus,the force-transmitting capacity of the interfacial connectors should be concerned in design activities.As regards the circular segments,the interfacial connectors refer to both the shearing and the stripping connectors.The composite effect of the SCC and RC segments increases with the increasing number of these connectors.The latter,therefore,results in the increases of the bearing capacities and stiffnesses of the strengthened segments.Those increases become insignificant as the number of these connectors is sufficient to ensure a perfect composite effect of the SCC and RC segments.In addition,the numerical simulations show that using high-performance steel shell(HPS)or/and ultra-high-performance concrete(UHPC)is an effective way to increase the strengthening effect of SCCs.展开更多
In this manuscript,we study fracture of prestressed cylindrical concrete pipes.Such concrete pipes play a major role in tunneling and underground engineering.The structure is modelled fully in 3D using three-dimension...In this manuscript,we study fracture of prestressed cylindrical concrete pipes.Such concrete pipes play a major role in tunneling and underground engineering.The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement.This allows the method to capture important phenomena compared to a pure shell model of concrete.A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension.The model is validated through comparisons with experimental data.展开更多
This paper presents the design guide based on analytical,numerical and experimental investigation of Steel-concrete-steel(SCS)sandwich structural members comprising a lightweight concrete core with density ranged from...This paper presents the design guide based on analytical,numerical and experimental investigation of Steel-concrete-steel(SCS)sandwich structural members comprising a lightweight concrete core with density ranged from 1300 to 1445 kg/m3 subjected to static,impact and blast loads.The performance of lightweight sandwich members is also compared with similar members with normal weight concrete core and ultra high strength concrete core(fc=180 MPa).Novel J-hook shear connectors were invented to prevent the separation of face plates from the concrete core under extreme loads and their uses are not restricted by the concrete core thickness.Flexural and punching are the primary modes of failure under static point load.Impact test results show that the SCS sandwich panels with the J-hook connectors are capable of resisting impact load with less damage in comparison than equivalent stiffened steel plate panels.Blast tests with 100 kg TNT were performed on SCS sandwich specimens to investigate the key parameters that affect the blast resistance of SCS sandwich structure.Plastic yield line method is proposed to predict the plastic capacity and post peak large deflection of the sandwich plates.Finally,an energy balanced model is developed to analyze the global behavior of SCS sandwich panels subjected to dynamic load.展开更多
Various factors influence the tunneling are simplified considering the axial symmetry of the composite lining structure.The analytical expressions for the seepage field,stress,and displacement in the surrounding rock ...Various factors influence the tunneling are simplified considering the axial symmetry of the composite lining structure.The analytical expressions for the seepage field,stress,and displacement in the surrounding rock and those for the grouting circle,permeable lining,and ordinary lining are obtained according to the principle of effective stress.The seepage discharge,plastic zone,stress,and displacement around a tunnel affected by the different permeability coefficient ratios between the permeable lining and surrounding rock are studied.The reasonable value of permeability coefficient for the permeable lining are discussed.The results show that the grouting circle controls the tunnel seepage discharge well and has a reasonable permeability coefficient and an optimal radius.The grouting circle controls the plastic zone development in the surrounding rock,i.e.,the thicker the grouting circle,the smaller the plastic zone in the surrounding rock.The tunnel seepage discharge and the effective stress in the grouting circle and lining increase gradually with the increasing of permeability coefficient ratio and tend to be stable after the ratio reaches 0.1.Comprehensive analysis on the factors such as the stability of tunnel seepage discharge,the plastic zone of the surrounding rock and the stress around the tunnel indicates that it is relatively reasonable for the permeability coefficient ratio to be greater than or equal to 0.1.展开更多
A simulation acoustic emission (AE) signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal. This paper introduces the artifici...A simulation acoustic emission (AE) signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal. This paper introduces the artificial monitoring system, its application at underground roadway and its monitoring results, and tries to explore theoretically analyzing method of stability of underground concrete roadway by AE parameters. A simulation AE signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal It shows the nice future of the application in the active damage detection of composite material.展开更多
文摘Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load.
基金Funded by the Western China Communication Science & TechnologyProjects (No.200632800003)
文摘The influence of binder composition and pore structure of concrete on chloride diffusion coefficient in concrete were investigated by the natural immersion test, MIP test, SEM and EDS test, respectively. The experimental results showed that the effect of binder composition on chloride diffusion coefficient was the comprehensive result of concrete pore structure and binder hydration products, and the porosity and pore size distribution were the main factors that influence the changes of diffusion coefficient. The chloride diffusion coefficient decreased with increasing the curing temperature and the relative humidity. The hydration degree were promoted by improving curing temperatures, and then the porosity of concrete decreased and the proportion of gel pore and transitional pore increased, respectively. But the water evaporation decreased with increasing the relative humidity and then decreased porosity and increased the proportion of gel pore and transitional pore. Additionally, The chloride diffusion coefficient of concrete got the lower value when the appropriate replacement of fly ash in the ranges of 10%-20%, when the double-adding fly ash and slag content was 50%. The porosity increased and the ratio of C/S in C-S-H decreased with further increasing the fly ash content, which led to increase the chloride diffusion coefficient in concrete.
文摘Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with.This study replaced natural aggregate(stones) in concrete with round steel balls,which are inexpensive and easily obtainable.The diameters of the steel balls were 0.5 and 1 cm,and their density was 7.8 kg/m3.Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3.The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials(ASTM).The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm.More important,its compressive strength could reach 8848 MPa.These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.
文摘This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
文摘In view of China's development trend of green building and building industrialization,based on the emerging requirements of the structural engineering community,the development and proposition of novel resourcesaving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering.This paper provides a state of the art review of China's cutting-edge research and technologies in steel-concrete composite structures in recent years,including the building engineering,the bridge engineering and the special engineering.This paper summarizes the technical principles and applications of the long-span bi-directional composite structures,the long-span composite transfer structures,the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP)connectors,the steel plate concrete composite (SPCC)strengthen technique,and the innovative composite joints.By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited.The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.
基金partially supported by the National Science Foundation(Grant No.CMS-0002829)
文摘In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces.
文摘The glass fiber reinforced polymer (GFRP) tube is an effective material that can increase the bearing capacity and ductility of concrete.To study the mechanical behavior of this composite structure,twenty-one concrete-filled GFRP tubular short columns were tested under an eccentric load.The principle influencing factors,such as the eccentricity ratio,concrete strength and ratio of longitudinal reinforcement were also studied.In addition,the course of deformation,failure mode,and failure mechanism were analyzed by observing the phenomena and summarizing the data.The test results indicated that the strength and deformation characteristics of core concrete increase as a result of the addition of the GFRP tube.However,the gain in strength due to the addition of the GFRP tube decreases as the ratio of e /d increases.An increase in the longitudinal steel ratio can improve the bearing capacity of the composite short column effectively.Furthermore,the study showed that the constraint effect of the GFRP tube on high-strength concrete is not as effective as that on common concrete.The reason is that the lateral deformation of the high-strength concrete is less than that of the common concrete when the concrete column was tested under the same axial compression ratio.
文摘This paper presents the development and technological implementation of textile reinforced concrete (TRC) shells with integrated functions, such as illumination and light control. In that regard the establishment of material, structural and technological foundations along the entire value chain are of central importance: From the light-weight design idea to the demonstrator and reference object, to the technological implementation for the transfer of the research results into practice. The development of the material included the requirement-oriented composition of a high-strength fine grained concrete with an integrated textile reinforcement, such as carbon knitted fabrics. Innovations in formwork solutions provide new possibilities for concrete constructions. So, a bionic optimized shape of the pavilion was developed, realized by four connected TRC-lightweight-shells. The thin-walled TRC-shells were manufactured with a formwork made of glass-fibre reinforced polymer (GFRP). An advantage of the GFRP-formwork is the freedom of design concerning the formwork shape. Moreover, an excellent concrete quality can be achieved, while the production of the precast concrete components is simple and efficient simultaneously. After the production the new TRC-shells were installed and assembled on the campus of TU-Chemnitz. A special feature of the research pavilions are the LED light strips integrated in the shell elements, providing homogeneous illumination.
文摘In the case of composite girders, an effective cooperation of both parts of the section is influenced by deformability of connectors. Limited flexural stiffness of welded studs, used commonly in bridge structures, does not provide full interaction of a steel beam and a concrete slab. This changes strain distribution in cross-sections of a composite girder and results in redistribution of internal forces in steel and concrete element. In the paper partial interaction index defined on the basis of a neutral axis position, which can be used for verification of steel-concrete interaction in real bridge structures rather than in specimens is proposed. The range of the index value changes, obtained during load testing of a typical steel-concrete composite beam bridge, is presented. The investigation was carried out on a motorway viaduct, consisting of two parallel structures. During the testing values of strains in girders under static and quasi-static loads were measured. The readings from the gauges were used to determine the index, characterizing composite action of the girders. Results of bridge testing under movable load, changing position along the bridge span is presented and obtained in-situ influence functions of strains and index values are commented in the paper.
基金National Natural Science Foundation of China(Nos.21471100,21704066)Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515010241)Shenzhen Natural Science Fund,China(the Stable Support Plan Program)(No.20200813081943001).
文摘A Fe_(2)O_(3)-MWNTs(multi-walled carbon nanotubes)composite with a reinforced concrete structure was fabricated employing a two-step method which involves a sol-gel process followed by high-temperature in situ sintering.This Fe_(2)O_(3)-MWNTs composite,intended to be used as an anode material for lithium-ion batteries,maintained a reversible capacity as high as 896.3 mA·h/g after 100 cycles at a current density of 100 mA/g and the initial coulombic efficiency reached 75.5%.The rate capabilities of the Fe_(2)O_(3)-MWNTs composite,evaluated using the ratios of capacity at 100,200,500,1000,2000 and 100 mA/g after every 10 cycles,were determined to be 904.7,852.1,759.0,653.8,566.8 and 866.3 mA·h/g,respectively.Such a superior electrochemical performance of the Fe_(2)O_(3)-MWNTs composite is mainly attributed to the reinforced concrete construction,in which the MWNTs function as the skeleton and conductive network.Such a structure contributes to shortening the transport pathways for both Li+and electrons,enhancing conductivity and accommodating volume expansion during prolonged cycling.This Fe_(2)O_(3)-MWNTs composite with the designed structure is a promising anode material for high-performance lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.52078376,51908424,and 52038008)the Shanghai Rising-Star Program(Grant No.22QB1405000)the State Key Laboratory for Hazard Reduction in Civil Engineering of Tongji University(Grant No.SLDRCE19-B-39).
文摘In order to study the feasibility of strengthening of segmental tunnel linings by using steel-concrete composites(SCC),a three-dimensional(3D)finite element(FE)model is proposed in this paper.The nonlinear mechanical behavior of concrete is described by a plastic-damage model.The nonlinearity,resulting from the interface of the SCC and reinforced concrete(RC)segments,is simulated with the help of a system of springs.The analysis results are compared with those obtained from a full-scale test of a tunnel segment.Their agreement validates the usefulness of the 3D FE model.Numerical re-analysis of the test shows that the interfacial connectors govern both the strengthening effect of SCC and the failure pattern of the strengthened segments.Thus,the force-transmitting capacity of the interfacial connectors should be concerned in design activities.As regards the circular segments,the interfacial connectors refer to both the shearing and the stripping connectors.The composite effect of the SCC and RC segments increases with the increasing number of these connectors.The latter,therefore,results in the increases of the bearing capacities and stiffnesses of the strengthened segments.Those increases become insignificant as the number of these connectors is sufficient to ensure a perfect composite effect of the SCC and RC segments.In addition,the numerical simulations show that using high-performance steel shell(HPS)or/and ultra-high-performance concrete(UHPC)is an effective way to increase the strengthening effect of SCCs.
文摘In this manuscript,we study fracture of prestressed cylindrical concrete pipes.Such concrete pipes play a major role in tunneling and underground engineering.The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement.This allows the method to capture important phenomena compared to a pure shell model of concrete.A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension.The model is validated through comparisons with experimental data.
基金The authors acknowledge the financial support by Singapore Defense Science&Technology Agency on a project“Explosive Testing of SCS Sandwich Composite Panel”(R379000017123)Lloyd Register on project“Development of Composite Sandwich Structures for Arctic Region”(R264002003720).Special thanks go to Mr.K.W.Kang for his work on blast tests.
文摘This paper presents the design guide based on analytical,numerical and experimental investigation of Steel-concrete-steel(SCS)sandwich structural members comprising a lightweight concrete core with density ranged from 1300 to 1445 kg/m3 subjected to static,impact and blast loads.The performance of lightweight sandwich members is also compared with similar members with normal weight concrete core and ultra high strength concrete core(fc=180 MPa).Novel J-hook shear connectors were invented to prevent the separation of face plates from the concrete core under extreme loads and their uses are not restricted by the concrete core thickness.Flexural and punching are the primary modes of failure under static point load.Impact test results show that the SCS sandwich panels with the J-hook connectors are capable of resisting impact load with less damage in comparison than equivalent stiffened steel plate panels.Blast tests with 100 kg TNT were performed on SCS sandwich specimens to investigate the key parameters that affect the blast resistance of SCS sandwich structure.Plastic yield line method is proposed to predict the plastic capacity and post peak large deflection of the sandwich plates.Finally,an energy balanced model is developed to analyze the global behavior of SCS sandwich panels subjected to dynamic load.
基金Supported by the General Program of the National Natural Science Foundation of China(Grant No.51379178)
文摘Various factors influence the tunneling are simplified considering the axial symmetry of the composite lining structure.The analytical expressions for the seepage field,stress,and displacement in the surrounding rock and those for the grouting circle,permeable lining,and ordinary lining are obtained according to the principle of effective stress.The seepage discharge,plastic zone,stress,and displacement around a tunnel affected by the different permeability coefficient ratios between the permeable lining and surrounding rock are studied.The reasonable value of permeability coefficient for the permeable lining are discussed.The results show that the grouting circle controls the tunnel seepage discharge well and has a reasonable permeability coefficient and an optimal radius.The grouting circle controls the plastic zone development in the surrounding rock,i.e.,the thicker the grouting circle,the smaller the plastic zone in the surrounding rock.The tunnel seepage discharge and the effective stress in the grouting circle and lining increase gradually with the increasing of permeability coefficient ratio and tend to be stable after the ratio reaches 0.1.Comprehensive analysis on the factors such as the stability of tunnel seepage discharge,the plastic zone of the surrounding rock and the stress around the tunnel indicates that it is relatively reasonable for the permeability coefficient ratio to be greater than or equal to 0.1.
文摘A simulation acoustic emission (AE) signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal. This paper introduces the artificial monitoring system, its application at underground roadway and its monitoring results, and tries to explore theoretically analyzing method of stability of underground concrete roadway by AE parameters. A simulation AE signal was processed. And an effective algorithm was presented to obtain the useful signal about the place information from the simulation signal It shows the nice future of the application in the active damage detection of composite material.