Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-r...In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8^(+) T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.展开更多
Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe n...Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluores...We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluorescence staining, water contact angle and atomic force microscopy(AFM) measurements. Besides, the biological evaluation experiments were also performed, such as platelets adhesion and activation, the culturing of smooth muscle cells(SMC) and endothelial cells(EC). These experimental results show that the modified surfaces could prevent the hyperproliferation of SMC, and promote the proliferation and migration of EC and EPC. Furthermore, the adding of VEGF improved the EC adhesion in a dynamic environment. Generally, it is expected that the modified surfaces could be used to accelerate the formation of the newly endothelial layer for the construction of platforms for coronary artery stent therapy.展开更多
Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplanta...Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox(VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR(0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition(5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6(Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs(ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson’s disease.展开更多
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ...Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.展开更多
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati...Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice.展开更多
AIM:To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell(hiPSC)-derived retinal organoids(ROs).METHODS:The hiPSC and a three-dimensional culture method were use...AIM:To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell(hiPSC)-derived retinal organoids(ROs).METHODS:The hiPSC and a three-dimensional culture method were used for the experiments.Generated embryoid bodies(EBs)were randomly and equally divided into hypoxic and normoxic groups.Photographs of the EBs were taken on days 38,45,and 52,and the corresponding volume of EBs was calculated.Simultaneously,samples were collected at these three timepoints,followed by fixation,sectioning,and immunofluorescence.RESULTS:The proportion of Ki67-positive proliferating cells increased steadily on day 38;this proliferationpromoting effect tended to increase tissue density rather than tissue volume.On days 45 and 52,the two groups had relatively similar ratios of Ki67-positive cells.Further immunofluorescence analysis showed that the ratio of SOX2-positive cells significantly increased within the neural retina on day 52(P<0.05).In contrast,the percentage of PAX6-and CHX10-positive cells significantly decreased following hypoxia treatment at all three timepoints(P<0.01),except for CHX10 at day 45(P>0.05).Moreover,the proportion of PAX6-/TUJ1+cells within the neural retinas increased considerably(P<0.01,<0.05,<0.05 respectively).CONCLUSION:Low oxygen promotes stemness and proliferation of neural retinas,suggesting that hypoxic conditions can enlarge the retinal progenitor cell pool in hiPSC-derived ROs.展开更多
AIM:To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid(h ERO-RPCs)could promote Müller glia dedifferentiation and transdifferenti...AIM:To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid(h ERO-RPCs)could promote Müller glia dedifferentiation and transdifferentiation,thus improving visual function and delaying retinal degenerative progression.METHODS:h ERO-RPCs were subretinally transplanted into Royal College of Surgeons(RCS)rats.Electroretinography(ERG)recording was performed at 4 and 8wk postoperation to assess retinal function.Using immunofluorescence,the changes in outer nuclear layer(ONL)thickness and retinal Müller glia were explored at 2,4,and 8wk postoperation.To verify the effect of h ERO-RPCs on Müller glia in vitro,we cocultured h ERO-RPCs with Müller glia with a Transwell system.After coculture,Ki67 staining and quantitative polymerase chain reaction(q PCR)were performed to measure the proliferation and m RNA levels of Müller glia respectively.Cell migration experiment was used to detect the effect of h ERO-RPCs on Müller glial migration.Comparisons between two groups were performed by the unpaired Student’s t-test,and comparisons among multiple groups were made with one-way ANOVA followed by Tukey’s multiple comparison test.RESULTS:The visual function and ONL thickness of RCS rats were significantly improved by transplantation of h ERO-RPCs at 4 and 8wk postoperation.In addition to inhibiting gliosis at 4 and 8wk postoperation,h ERO-RPCs significantly increased the expression of dedifferentiation-associated transcriptional factor in Müller glia and promoted the migration at 2,4 and 8wk postoperation,but not the transdifferentiation of these cells in RCS rats.In vitro,using the Transwell system,we found that h ERO-RPCs promoted the proliferation and migration of primary rat Müller glia and induced their dedifferentiation at the m RNA level.CONCLUSION:These results show that h ERO-RPCs might promote early dedifferentiation of Müller glia,which may provide novel insights into the mechanisms of stem cell therapy and Müller glial reprogramming,contributing to the development of novel therapies for retinal degeneration disorders.展开更多
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re...Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.展开更多
This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myoc...This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myocardial infarction (AMI), and to investigate the relationships between these cytokines and early EPCs. Early EPCs, de- fined as CD133+, KDR+, and CD34~ cells, were quantified by flow cytometry. The levels of early EPCs and those cytokines in AMI patients were significantly different from those with coronary artery disease or controls (P 〈 0.05). Plasma apelin levels were inversely correlated with Gensini score and early EPCs (both P 〈 0.01). Early EPCs, VEGF and SDF-1 showed different patterns of changes in AMI patients during the first 24 h. The trend in the change of early EPCs was proportionally correlated with that of VEGF (P 〈 0.05). AMI patients exhibited in- creased early EPCs with remarkably decreased apelin levels and enhanced VEGF levels.展开更多
Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of fo...Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.展开更多
The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabeti...The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P〈O.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function.展开更多
Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of p...Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury.Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role.Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk.In this review,we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension,obstructive sleep-apnea syndrome,obesity,diabetes mellitus,peripheral arterial disease,coronary artery disease,pulmonary hypertension,and heart failure.Recent studies have introduced the novel concept that physical activity,either performed as a single exercise session or performed as part of an exercise training program,results in a significant increase of circulating EPCs.In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations.展开更多
The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial c...The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs' therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine.展开更多
AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver...AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver fibrosis environment.METHODS The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis.RESULTS Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs(707.10 ± 54.32) and BM-EPCs/BDHSCs group(615.42 ± 42.96), compared with those in the model group and BDHSCs group(P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF m RNA levels. The levels of alanine aminotransferase(AST), aspartate aminotransferase, total bilirubin(TBIL), prothrombin time(PT) and activated partial thromboplastin time in the BMEPCs/BDHSCs group were significantly improved, to be equivalent to normal levels(P > 0.05) compared with those in the BDHSC(AST, TBIL and PT, P < 0.05) and BM-EPCs(TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis(staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BMEPCs 2.75 ± 0.16, P < 0.05).CONCLUSION The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer.展开更多
Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cel...Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cells involved in both vasculogenesis and angiogenesis,may be a potential therapeutic target.After a stroke,EPCs migrate to the site of ischemic injury to repair cerebrovascular damage,and their numbers and functional capacity may determine patients'outcome.This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type(cortical or lacunar)and/or severity of ischemic stroke.The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age.100 stroke patients(50 lacunar and 50 cortical strokes)will be recruited in this prospective,observational case-controlled study.Blood samples will be taken from stroke patients at baseline(within 48 hours of stroke)and days 7,30 and90.EPCs will be counted with flow cytometry.The plasma levels of pro-and anti-angiogenic factors and inflammatory cytokines will also be determined.Outgrowth endothelial cells will be cultured to be used in tube formation,migration and proliferation functional assays.Primary outcome is disability or dependence on day 90 after stroke,assessed by the modified Rankin Scale.Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers,between patient subgroups and between elderly and young healthy volunteers.Recruitment started in February 2017,167 participants have been recruited.Recruitment will end in November 2019.West Midlands-Coventry&Warwickshire Research Ethics Committee approved this study(REC number:16/WM/0304)on September8,2016.Protocol version:2.0.The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov(NCT02980354)on November 15,2016.This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery.展开更多
AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were estab...AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage.展开更多
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 32270955)the Jiangsu Provincial Medical Key Discipline (Grant No. YXZDXK202236)+1 种基金the Key Project of Jiangsu Provincial Health Commission (Grant No. K2023069)the Science and Technology Support Plan (Social Development) Project of Changzhou (Grant No. CE20235058)。
文摘In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8^(+) T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.
基金supported by the National Natural Science Foundation of China,Nos.82071307(to HL),82271362(to HL),82171294(to JW),82371303(to JW),and 82301460(to PX)the Natural Science Foundation of Jiangsu Province,No.BK20211552(to HL)+1 种基金Suzhou Medical Technology Innovation Project-Clinical Frontier,No.SKY2022002(to ZY)the Science and Education Foundation for Health of Suzhou for Youth,No.KJXW2023001(to XL)。
文摘Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
基金Funded by the National Natural Science Foundation of China(Nos.32271377 and 31870955)the National Key Research and Development of China (No.2020YFC1107300-03)。
文摘We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluorescence staining, water contact angle and atomic force microscopy(AFM) measurements. Besides, the biological evaluation experiments were also performed, such as platelets adhesion and activation, the culturing of smooth muscle cells(SMC) and endothelial cells(EC). These experimental results show that the modified surfaces could prevent the hyperproliferation of SMC, and promote the proliferation and migration of EC and EPC. Furthermore, the adding of VEGF improved the EC adhesion in a dynamic environment. Generally, it is expected that the modified surfaces could be used to accelerate the formation of the newly endothelial layer for the construction of platforms for coronary artery stent therapy.
基金supported by the National Natural Science Foundation of China,No. 81771381 (to CQL)Anhui Provincial Key Research and Development Project,Nos. 2022e07020030 (to CQL), 2022e07020032 (to YG)+2 种基金Science Research Project of Bengbu Medical College,No. 2021byfy002 (to CQL)the Natural Science Foundation of the Higher Education Institutions of Anhui Province,No. KJ2021ZD0085 (to CJW)the Undergraduate Innovative Training Program of China,Nos. 202110367043 (to CQL), 202110367044 (to YG)。
文摘Neural progenitor cells(NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox(VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR(0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition(5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6(Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs(ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson’s disease.
基金Supported by Shenzhen Science and Technology Program,No.GJHZ20210705142543019Guangdong Basic and Applied Basic Research Foundation,No.2023A1515220074.
文摘Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM.
基金support by the Faculty of Medicine,Ludwig-Maximilians-University(FöFoLe,Project 843 and 955,to TH and MMS).
文摘Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice.
基金Supported by the National Nature Science Foundation of China(No.82070937,No.81870640,No.82000923).
文摘AIM:To observe the effect of low oxygen concentration on the neural retina in human induced pluripotent stem cell(hiPSC)-derived retinal organoids(ROs).METHODS:The hiPSC and a three-dimensional culture method were used for the experiments.Generated embryoid bodies(EBs)were randomly and equally divided into hypoxic and normoxic groups.Photographs of the EBs were taken on days 38,45,and 52,and the corresponding volume of EBs was calculated.Simultaneously,samples were collected at these three timepoints,followed by fixation,sectioning,and immunofluorescence.RESULTS:The proportion of Ki67-positive proliferating cells increased steadily on day 38;this proliferationpromoting effect tended to increase tissue density rather than tissue volume.On days 45 and 52,the two groups had relatively similar ratios of Ki67-positive cells.Further immunofluorescence analysis showed that the ratio of SOX2-positive cells significantly increased within the neural retina on day 52(P<0.05).In contrast,the percentage of PAX6-and CHX10-positive cells significantly decreased following hypoxia treatment at all three timepoints(P<0.01),except for CHX10 at day 45(P>0.05).Moreover,the proportion of PAX6-/TUJ1+cells within the neural retinas increased considerably(P<0.01,<0.05,<0.05 respectively).CONCLUSION:Low oxygen promotes stemness and proliferation of neural retinas,suggesting that hypoxic conditions can enlarge the retinal progenitor cell pool in hiPSC-derived ROs.
基金Supported by the National Key Research and Development Program of China(No.2018YFA0107302)the Natural Science Foundation of Chongqing,China(No.cstc2021jcyj-msxm X0437)。
文摘AIM:To explore whether the subretinal transplantation of retinal progenitor cells from human embryonic stem cell-derived retinal organoid(h ERO-RPCs)could promote Müller glia dedifferentiation and transdifferentiation,thus improving visual function and delaying retinal degenerative progression.METHODS:h ERO-RPCs were subretinally transplanted into Royal College of Surgeons(RCS)rats.Electroretinography(ERG)recording was performed at 4 and 8wk postoperation to assess retinal function.Using immunofluorescence,the changes in outer nuclear layer(ONL)thickness and retinal Müller glia were explored at 2,4,and 8wk postoperation.To verify the effect of h ERO-RPCs on Müller glia in vitro,we cocultured h ERO-RPCs with Müller glia with a Transwell system.After coculture,Ki67 staining and quantitative polymerase chain reaction(q PCR)were performed to measure the proliferation and m RNA levels of Müller glia respectively.Cell migration experiment was used to detect the effect of h ERO-RPCs on Müller glial migration.Comparisons between two groups were performed by the unpaired Student’s t-test,and comparisons among multiple groups were made with one-way ANOVA followed by Tukey’s multiple comparison test.RESULTS:The visual function and ONL thickness of RCS rats were significantly improved by transplantation of h ERO-RPCs at 4 and 8wk postoperation.In addition to inhibiting gliosis at 4 and 8wk postoperation,h ERO-RPCs significantly increased the expression of dedifferentiation-associated transcriptional factor in Müller glia and promoted the migration at 2,4 and 8wk postoperation,but not the transdifferentiation of these cells in RCS rats.In vitro,using the Transwell system,we found that h ERO-RPCs promoted the proliferation and migration of primary rat Müller glia and induced their dedifferentiation at the m RNA level.CONCLUSION:These results show that h ERO-RPCs might promote early dedifferentiation of Müller glia,which may provide novel insights into the mechanisms of stem cell therapy and Müller glial reprogramming,contributing to the development of novel therapies for retinal degeneration disorders.
基金Supported by the Natural Science Foundation of Anhui Province,No.2008085MH251Key Research and Development Project of Anhui Province,No.202004J07020037+1 种基金Anhui Provincial Institute of Translational Medicine,No.2021zhyx-C19National Undergraduate Innovation and Entrepreneurship training program,No.202010366016。
文摘Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.
基金supported by the program (No. CX10B_421Z to Jiaxin Ye) for Postgraduate Research Innovation in Universities of Jiangsu Provincethe grants (No. 81070195) and (No. 81000055) from Chinese National Science Fund of China (all to Biao Xu)grant (No.KF200938 to Lina Kang) from Jiangsu Province
文摘This study was designed to determine the levels of early endothelial progenitor cells (EPCs), apelin, vascu- lar endothelial growth factor (VEGF) and stromal cell-derived growth factor-1 (SDF-1) after acute myocardial infarction (AMI), and to investigate the relationships between these cytokines and early EPCs. Early EPCs, de- fined as CD133+, KDR+, and CD34~ cells, were quantified by flow cytometry. The levels of early EPCs and those cytokines in AMI patients were significantly different from those with coronary artery disease or controls (P 〈 0.05). Plasma apelin levels were inversely correlated with Gensini score and early EPCs (both P 〈 0.01). Early EPCs, VEGF and SDF-1 showed different patterns of changes in AMI patients during the first 24 h. The trend in the change of early EPCs was proportionally correlated with that of VEGF (P 〈 0.05). AMI patients exhibited in- creased early EPCs with remarkably decreased apelin levels and enhanced VEGF levels.
基金Supported by The National Medical Research Council,Singa-pore,No.NMRC/NIG/1038/2010the National University Health System Clinician Scientist Program(NCSP)from the Cli-nician Scientist Unit,Yong Loo Lin School of Medicine,National University of Singapore
文摘Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.
文摘The present study investigated the effect of transplanting endothelial progenitor cells (EPCs) transfected with the vascular endothelial growth factor gene (VEGF165) into the corpora cavernosa of rats with diabetic erectile dysfunction (ED). A rat model of diabetic ED was constructed via intraperitoneal injection of streptozotocin. After streptozotocin treatment, pre-treated EPCs from each of three groups of rats were transplanted into their corpora cavernosa. Our results, following intracavernosal pressure (ICP) monitoring, showed that ICP increased significantly among rats in the trial group when compared to the results from rats in the blank-plasmid and control groups during basal conditions and electrical stimulation (P〈O.01 for both comparisons). Histological examination revealed extensive neovascularisation in the corpora cavernosa of rats in the trial group. Fluorescence microscopy indicated that many of the transplanted EPCs in the trial group survived, differentiated into endothelial cells and integrated into the sites of neovascularisation. Based on the results of this study, we conclude that transplantation of VEGF165-transfected EPCs into the corpora cavernosa of rats with diabetic ED restores erectile function.
文摘Circulating bone-marrow-derived cells,named endothelial progenitor cells(EPCs),are capable of maintaining,generating,and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury.Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role.Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk.In this review,we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension,obstructive sleep-apnea syndrome,obesity,diabetes mellitus,peripheral arterial disease,coronary artery disease,pulmonary hypertension,and heart failure.Recent studies have introduced the novel concept that physical activity,either performed as a single exercise session or performed as part of an exercise training program,results in a significant increase of circulating EPCs.In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations.
基金Supported by CNCSIS–UEFISCSU, No.1159, PNⅡ-IDEI code 1043/2008CNMP project number 42138, PNⅡ-Parteneriat code 3334/2008+1 种基金European Social Fund-‘Cristofor Ⅰ. Simionescu’ Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216)Sectoral Operational Programme Human Resources Development 2007–2013, Romanian Academy
文摘The vascular endothelium is a critical determinant of dia- betes-associated vascular complications, and improving endothelial function is an important target for therapy. Diabetes mellitus contributes to endothelial cell injury and dysfunction. Endothelial progenitor cells (EPCs) play a critical role in maintaining endothelial function and might affect the progression of vascular disease. EPCs are essential to blood vessel formation, can differentiate into mature endothelial cells, and promote the repair of damaged endothelium. In diabetes, the circulating EPC count is low and their functionality is impaired. The me- chanisms that underlie this reduced count and impaired functionality are poorly understood. Knowledge of the status of EPCs is critical for assessing the health of the vascular system, and interventions that increase the number of EPCs and restore their angiogenic activity in diabetes may prove to be particularly beneficial. The pre-sent review outlines current thinking on EPCs' therapeutic potential in endothelial dysfunction in diabetes, as well as evidence-based perspectives regarding their use for vascular regenerative medicine.
基金Supported by the National Natural Science Foundation of China,No.30900598the Basic and Advanced Technology Research Program of Henan Province,No.142300410380the Medical Science and Technology Project of Henan Province,No.201303211
文摘AIM To explore the effectiveness for treating liver fibrosisby combined transplantation of bone marrow-derived endothelial progenitor cells(BM-EPCs) and bone marrow-derived hepatocyte stem cells(BDHSCs) from the liver fibrosis environment.METHODS The liver fibrosis rat models were induced with carbon tetrachloride injections for 6 wk. BM-EPCs from rats with liver fibrosis were obtained by different rates of adherence and culture induction. BDHSCs from rats with liver fibrosis were isolated by magnetic bead cell sorting. Tracing analysis was conducted by labeling EPCs with PKH26 in vitro to show EPC location in the liver. Finally, BM-EPCs and/or BDHSCs transplantation into rats with liver fibrosis were performed to evaluate the effectiveness of BM-EPCs and/or BDHSCs on liver fibrosis.RESULTS Normal functional BM-EPCs from liver fibrosis rats were successfully obtained. The co-expression level of CD133 and VEGFR2 was 63.9% ± 2.15%. Transplanted BM-EPCs were located primarily in/near hepatic sinusoids. The combined transplantation of BM-EPCs and BDHSCs promoted hepatic neovascularization, liver regeneration and liver function, and decreased collagen formation and liver fibrosis degree. The VEGF levels were increased in the BM-EPCs(707.10 ± 54.32) and BM-EPCs/BDHSCs group(615.42 ± 42.96), compared with those in the model group and BDHSCs group(P < 0.05). Combination of BM-EPCs/BDHSCs transplantation induced maximal up-regulation of PCNA protein and HGF m RNA levels. The levels of alanine aminotransferase(AST), aspartate aminotransferase, total bilirubin(TBIL), prothrombin time(PT) and activated partial thromboplastin time in the BMEPCs/BDHSCs group were significantly improved, to be equivalent to normal levels(P > 0.05) compared with those in the BDHSC(AST, TBIL and PT, P < 0.05) and BM-EPCs(TBIL and PT, P < 0.05) groups. Transplantation of BM-EPCs/BDHSCs combination significantly reduced the degree of liver fibrosis(staging score of 1.75 ± 0.25 vs BDHSCs 2.88 ± 0.23 or BMEPCs 2.75 ± 0.16, P < 0.05).CONCLUSION The combined transplantation exhibited maximal therapeutic effect compared to that of transplantation of BM-EPCs or BDHSCs alone. Combined transplantation of autogenous BM-EPCs and BDHSCs may represent a promising strategy for the treatment of liver fibrosis, which would eventually prevent cirrhosis and liver cancer.
基金supported by a grant to Dr Ulvi Bayraktutan from The Dunhill Medical Trust(R459/0216)
文摘Ischemic stroke is a devastating,life altering event which can severely reduce patient quality of life.Despite years of research there have been minimal therapeutic advances.Endothelial progenitor cells(EPCs),stem cells involved in both vasculogenesis and angiogenesis,may be a potential therapeutic target.After a stroke,EPCs migrate to the site of ischemic injury to repair cerebrovascular damage,and their numbers and functional capacity may determine patients'outcome.This study aims to determine whether the number of circulating EPCs and their functional aspects may be used as biomarkers to identify the type(cortical or lacunar)and/or severity of ischemic stroke.The study will also investigate if there are any differences in these characteristics between healthy volunteers over and under 65 years of age.100 stroke patients(50 lacunar and 50 cortical strokes)will be recruited in this prospective,observational case-controlled study.Blood samples will be taken from stroke patients at baseline(within 48 hours of stroke)and days 7,30 and90.EPCs will be counted with flow cytometry.The plasma levels of pro-and anti-angiogenic factors and inflammatory cytokines will also be determined.Outgrowth endothelial cells will be cultured to be used in tube formation,migration and proliferation functional assays.Primary outcome is disability or dependence on day 90 after stroke,assessed by the modified Rankin Scale.Secondary outcomes are changes in circulating EPC numbers and/or functional capacity between patient and healthy volunteers,between patient subgroups and between elderly and young healthy volunteers.Recruitment started in February 2017,167 participants have been recruited.Recruitment will end in November 2019.West Midlands-Coventry&Warwickshire Research Ethics Committee approved this study(REC number:16/WM/0304)on September8,2016.Protocol version:2.0.The Bayraktutan Dunhill Medical Trust EPC Study was registered in ClinicalTrials.gov(NCT02980354)on November 15,2016.This study will determine whether the number of EPCs can be used as a prognostic or diagnostic marker for ischemic strokes and is a step towards discovering if transplantation of EPCs may aid patient recovery.
基金Supported by The Grant-in-Aid entitled"Stem cells for regenerative medicine:Isolation of Multipotent adult Progenitor Cells from Human Bone Marrow and their Clonal Expansion and Differentiation into Cardiomyocytes,Hepatocytes and Beta-islets"No.BT/PR6303/MED/14/776/2005,sanctioned by Department of Biotechnology,Government of India
文摘AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage.