Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic predict...Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic prediction tool.Besides,it is unclear whether preoperative neoadjuvant therapy is necessary for patients with early singular nodular HCC and which patient needs it.It is critical to identify the patients with high risk of recurrence and to treat these patients preoperatively with neoadjuvant therapy and thus,to improve the outcomes of these patients.The present study aimed to develop two prognostic models to preoperatively predict the recurrence-free survival(RFS)and overall survival(OS)in patients with singular nodular HCC by integrating the clinical data and radiological features.Methods:We retrospective recruited 211 patients with singular nodular HCC from December 2009 to January 2019 at Eastern Hepatobiliary Surgery Hospital(EHBH).They all met the surgical indications and underwent radical resection.We randomly divided the patients into the training cohort(n=132)and the validation cohort(n=79).We established and validated multivariate Cox proportional hazard models by the preoperative clinicopathologic factors and radiological features for association with RFS and OS.By analyzing the receiver operating characteristic(ROC)curve,the discrimination accuracy of the models was compared with that of the traditional predictive models.Results:Our RFS model was based on HBV-DNA score,cirrhosis,tumor diameter and tumor capsule in imaging.RFS nomogram had fine calibration and discrimination capabilities,with a C-index of 0.74(95%CI:0.68-0.80).The OS nomogram,based on cirrhosis,tumor diameter and tumor capsule in imaging,had fine calibration and discrimination capabilities,with a C-index of 0.81(95%CI:0.74-0.87).The area under the receiver operating characteristic curve(AUC)of our model was larger than that of traditional liver cancer staging system,Korea model and Nomograms in Hepatectomy Patients with Hepatitis B VirusRelated Hepatocellular Carcinoma,indicating better discrimination capability.According to the models,we fitted the linear prediction equations.These results were validated in the validation cohort.Conclusions:Compared with previous radiography model,the new-developed predictive model was concise and applicable to predict the postoperative survival of patients with singular nodular HCC.Our models may preoperatively identify patients with high risk of recurrence.These patients may benefit from neoadjuvant therapy which may improve the patients’outcomes.展开更多
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev...BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
BACKGROUND Liver metastases(LM)is the primary factor contributing to unfavorable outcomes in patients diagnosed with gastric cancer(GC).The objective of this study is to analyze significant prognostic risk factors for...BACKGROUND Liver metastases(LM)is the primary factor contributing to unfavorable outcomes in patients diagnosed with gastric cancer(GC).The objective of this study is to analyze significant prognostic risk factors for patients with GCLM and develop a reliable nomogram model that can accurately predict individualized prognosis,thereby enhancing the ability to evaluate patient outcomes.AIM To analyze prognostic risk factors for GCLM and develop a reliable nomogram model to accurately predict individualized prognosis,thereby enhancing patient outcome assessment.METHODS Retrospective analysis was conducted on clinical data pertaining to GCLM(type III),admitted to the Department of General Surgery across multiple centers of the Chinese PLA General Hospital from January 2010 to January 2018.The dataset was divided into a development cohort and validation cohort in a ratio of 2:1.In the development cohort,we utilized univariate and multivariate Cox regression analyses to identify independent risk factors associated with overall survival in GCLM patients.Subsequently,we established a prediction model based on these findings and evaluated its performance using receiver operator characteristic curve analysis,calibration curves,and clinical decision curves.A nomogram was created to visually represent the prediction model,which was then externally validated using the validation cohort.RESULTS A total of 372 patients were included in this study,comprising 248 individuals in the development cohort and 124 individuals in the validation cohort.Based on Cox analysis results,our final prediction model incorporated five independent risk factors including albumin levels,primary tumor size,presence of extrahepatic metastases,surgical treatment status,and chemotherapy administration.The 1-,3-,and 5-years Area Under the Curve values in the development cohort are 0.753,0.859,and 0.909,respectively;whereas in the validation cohort,they are observed to be 0.772,0.848,and 0.923.Furthermore,the calibration curves demonstrated excellent consistency between observed values and actual values.Finally,the decision curve analysis curve indicated substantial net clinical benefit.CONCLUSION Our study identified significant prognostic risk factors for GCLM and developed a reliable nomogram model,demonstrating promising predictive accuracy and potential clinical benefit in evaluating patient outcomes.展开更多
Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production...Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.展开更多
BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,ofte...BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.展开更多
Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help ...Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.展开更多
BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications.Cell demise mechanisms play a pivotal role in breast cancer pathogenesis,with ATP-triggered cell death attract...BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications.Cell demise mechanisms play a pivotal role in breast cancer pathogenesis,with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence.AIM To investigate the impact of ATP-induced cell death(AICD)on breast cancer,enhancing our understanding of its mechanism.METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature,underpinning the establishment of a prognostic model.Simultaneously,a microRNA(miRNA)prognostic model was constructed that mirrored the gene-based prognostic model.Distinctions between high-and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized,with the aim of delineating common influence mechanisms,substantiated through enrichment analysis and immune infiltration assessment.RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs:P2X purinoceptor 4,pannexin 1,caspase 7,and cyclin 2.The miRNA prognostic model integrated four pivotal miRNAs:hsa-miR-615-3p,hsa-miR-519b-3p,hsa-miR-342-3p,and hsa-miR-324-3p.B cells,CD4+T cells,CD8+T cells,endothelial cells,and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes.Furthermore,Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways,while miRNA risk scores significantly enriched 29 signaling pathways,with 16 pathways being jointly enriched.CONCLUSION Of paramount significance,distinct mRNA and miRNA signature models were devised tailored to AICD,both potentially autonomous prognostic factors.This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools,offering an unparalleled window for innovative interventions.Essentially,this paper reveals the hitherto enigmatic link between AICD and breast cancer,potentially leading to revolutionary progress in personalized oncology.展开更多
BACKGROUND The development and progression of hepatocellular carcinoma(HCC)have been reported to be associated with immune-related genes and the tumor microenvir-onment.Nevertheless,there are not enough prognostic bio...BACKGROUND The development and progression of hepatocellular carcinoma(HCC)have been reported to be associated with immune-related genes and the tumor microenvir-onment.Nevertheless,there are not enough prognostic biomarkers and models available for clinical use.Based on seven prognostic genes,this study calculated overall survival in patients with HCC using a prognostic survival model and revealed the immune status of the tumor microenvironment(TME).AIM To develop a novel immune cell-related prognostic model of HCC and depict the basic profile of the immune response in HCC.METHODS We obtained clinical information and gene expression data of HCC from The Cancer Genome Atlas(TCGA)and International Cancer Genome Consortium(ICGC)datasets.TCGA and ICGC datasets were used for screening prognostic genes along with developing and validating a seven-gene prognostic survival model by weighted gene coexpression network analysis and least absolute shrinkage and selection operator regression with Cox regression.The relative analysis of tumor mutation burden(TMB),TME cell infiltration,immune check-points,immune therapy,and functional pathways was also performed based on prognostic genes.RESULTS Seven prognostic genes were identified for signature construction.Survival receiver operating characteristic curve analysis showed the good performance of survival prediction.TMB could be regarded as an independent factor in HCC survival prediction.There was a significant difference in stromal score,immune score,and estimate score between the high-risk and low-risk groups stratified based on the risk score derived from the seven-gene prognostic model.Several immune checkpoints,including VTCN1 and TNFSF9,were found to be associated with the seven prognostic genes and risk score.Different combinations of checkpoint blockade targeting inhibitory CTLA4 and PD1 receptors and potential chemotherapy drugs hold great promise for specific HCC therapies.Potential pathways,such as cell cycle regulation and metabolism of some amino acids,were also identified and analyzed.CONCLUSION The novel seven-gene(CYTH3,ENG,HTRA3,PDZD4,SAMD14,PGF,and PLN)prognostic model showed high predictive efficiency.The TMB analysis based on the seven genes could depict the basic profile of the immune response in HCC,which might be worthy of clinical application.展开更多
The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as ...The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.展开更多
Adult T-cell lymphoblastic lymphoma(T-LBL)is a rare and aggressive subtype of non-Hodgkin’s lymphoma that differs from pediatric T-LBL and has a worse prognosis.Due to its rarity,little is known about the genetic and...Adult T-cell lymphoblastic lymphoma(T-LBL)is a rare and aggressive subtype of non-Hodgkin’s lymphoma that differs from pediatric T-LBL and has a worse prognosis.Due to its rarity,little is known about the genetic and molecular characteristics,optimal treatment modalities,and prognostic factors of adult T-LBL.Therefore,we summarized the existing studies to comprehensively discuss the above issues in this review.Genetic mutations of NOTCH1/FBXW7,PTEN,RAS,and KMT2D,together with abnormal activation of signaling pathways,such as the JAK-STAT signaling pathway were described.We also discussed the therapeutic modalities.Once diagnosed,adult T-LBL patients should receive intensive or pediatric acute lymphoblastic leukemia regimen and central nervous system prophylaxis as soon as possible,and cranial radiation-free protocols are appropriate.Mediastinal radiotherapy improves clinical outcomes,but adverse events are of concern.Hematopoietic stem cell transplantation may be considered for adult T-LBL patients with high-risk factors or those with relapsed/refractory disease.Besides,several novel prognostic models have been constructed,such as the 5-miRNAs-based classifier,11-gene-based classifier,and 4-CpG-based classifier,which have presented significant prognostic value in adult T-LBL.展开更多
Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients...Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients from The Cancer Genome Atlas(TCGA)database and the Chinese Glioma Genome Atlas database(CGGA)were downloaded.The aberrantly expressed RBPs were investigated between gliomas and normal samples in TCGA database.We then identified prognosis related hub genes and constructed a prognostic model.This model was further validated in the CGGA-693 and CGGA-325 cohorts.Results Totally 174 differently expressed genes-encoded RBPs were identified,containing 85 down-regulated and 89 up-regulated genes.We identified five genes-encoded RBPs(ERI1,RPS2,BRCA1,NXT1,and TRIM21)as prognosis related key genes and constructed a prognostic model.Overall survival(OS)analysis revealed that the patients in the high-risk subgroup based on the model were worse than those in the low-risk subgroup.The area under the receiver operator characteristic curve(AUC)of the prognostic model was 0.836 in the TCGA dataset and 0.708 in the CGGA-693 dataset,demonstrating a favorable prognostic model.Survival analyses of the five RBPs in the CGGA-325 cohort validated the findings.A nomogram was constructed based on the five genes and validated in the TCGA cohort,confirming a promising discriminating ability for gliomas.Conclusion The prognostic model of the five RBPs might serve as an independent prognostic algorithm for gliomas.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is the most common type of primary liver cancer.With highly invasive biological characteristics and a lack of obvious clinical manifestations,HCC usually has a poor prognosis an...BACKGROUND Hepatocellular carcinoma(HCC)is the most common type of primary liver cancer.With highly invasive biological characteristics and a lack of obvious clinical manifestations,HCC usually has a poor prognosis and ranks fourth in cancer mortality.The aetiology and exact molecular mechanism of primary HCC are still unclear.AIM To select the characteristic genes that are significantly associated with the prognosis of HCC patients and construct a prognosis model of this malignancy.METHODS By comparing the gene expression levels of patients with different cancer grades of HCC,we screened out differentially expressed genes associated with tumour grade.By protein-protein interaction(PPI)network analysis,we obtained the top 2 PPI networks and hub genes from these differentially expressed genes.By using least absolute shrinkage and selection operator Cox regression,13 prognostic genes were selected for feature extraction,and a prognostic risk model of HCC was established.RESULTS The model had significant prognostic ability in HCC.We also analysed the biological functions of these prognostic genes.CONCLUSION By comparing the gene profiles of patients with different stages of HCC,We have constructed a prognosis model consisting of 13 genes that have important prognostic value.This model has good application value and can be explained clinically.展开更多
Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glyc...Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential.Methods:First,gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO),and glycolysis-related genes were obtained from the Molecular Signatures Database(MSigDB).Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained,which were used in nonnegative matrix factorization(NMF)to identify clusters.The correlation between clusters and clinical features was discussed,and the differentially expressed genes(DEGs)between the two clusters were investigated.Based on the DEGs,we investigated the biological differences between clusters,including immune cell infiltration,mutation,tumor immune dysfunction and exclusion,immune function,and checkpoint genes.To establish the prognostic model,the genes were filtered based on univariable Cox regression,LASSO,and multivariable Cox regression.Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model.A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting.Result:The genes obtained from MSigDB were enriched in glycolysis functions.Two clusters were identified by NMF analysis based on 272 glycolysis-related genes,and a prognostic model based on DEGs between the two clusters was finally established.The prognostic model consisted of LAMPS,SPRN,ATOH1,TANC1,ETV1,TDRD1,KLK14,MESP2,POSTN,CRIP2,NAT1,AKR7A3,PODXL,CARTPT,and PCDHGB2.All sample,training,and test cohorts from The Cancer Genome Atlas(TCGA)and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups.The area under the ROC curve showed great performance of this prognostic model.Conclusion:A prognostic model based on glycolysis-related genes was established,with great performance and potential significance to the clinical application.展开更多
Cuproptosis is a newly discovered form of apoptotic process that is thought to play an important role in cancer therapy.Long non-coding RNA(lncRNA)is involved in regulating many physiological and pathological activiti...Cuproptosis is a newly discovered form of apoptotic process that is thought to play an important role in cancer therapy.Long non-coding RNA(lncRNA)is involved in regulating many physiological and pathological activities of cells.The aim of this study was to investigate the prognostic significance of Cuproptosis-associated lncRNAs in osteosarcoma.Methods:The Gene expression profiling of osteosarcoma samples versus normal samples and corresponding clinical data were downloaded from the public databases UCSC Xena and GTEx,and the cuproptosis gene was obtained from the published literature,the prognostic model of osteosarcoma cuproptosis-related lncRNA was constructed by using coexpression network,minimum absolute contraction and selection algorithm(LASSO)and Cox regression model.Receiver operating characteristic(ROC)curves and nomograms were used to assess the predictive power of the model.Single-sample gene set enrichment analysis(ssGSEA)was used to explore the relationship between osteosarcoma immune cells and function in different risk groups.Results:181 cuproptosis-related lncRNAs were obtained by co-expression analysis of 19 cuproptosis genes collected.Ten lncRNAs were screened out by differential analysis and single-factor Cox analysis.Three cuproptosis-related lncrnas(AC124798.1,AC090152.1,AC090559.1)were screened by Lasso and multivariate Cox regression to construct the prognostic model.Patients were divided into high and low risk groups based on the median risk score.The results of overall survival,risk score distribution and survival status in the lowrisk group were better than those in the high-risk group,and were verified in the internal data.Univariate and multivariate Cox regression analyses showed that risk score was an independent prognostic factor.Nomograms and ROC curves showed that the prognostic model had good predictive ability.The results of ssGSEA suggest that immune cells and function may be inhibited in the high-risk group.Conclusion:The 3 cuproptosis-related lncRNAs may be helpful to guide the prognosis of osteosarcoma patients and provide some theoretical basis for clinical decision.展开更多
Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important ...Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important role in tumor development.Methods:We obtained gene expression samples of normal liver tissue and hepatocellular carcinoma from the TCGA database and GEO database,screened for differentially expressed glutamine metabolismrelated genes(GMRGs),constructed a prognostic model by lasso regression and step cox analysis,and assessed the differences in drug sensitivity between high-and low-risk groups.Results:We screened 23 differentially expressed GMRGs by differential analysis,and correlation loop plots and PPI protein interaction networks indicated that these differential genes were strongly correlated.The four most characterized genes(CAD,PPAT,PYCR3,and SLC7A11)were obtained by lasso regression and step cox,and a risk model was constructed and confirmed to have reliable predictive power in the TCGA dataset and GEO dataset.Finally,immunotherapy is better in the high-risk group than in the low-risk group,and chemotherapy and targeted drug therapy are better in the low-risk group than in the high-risk group.Conclusion:In conclusion,we have developed a reliable prognostic risk model characterized by glutamine metabolism-related genes,which may provide a viable basis for the prognosis and Treatment options of HCC patients.展开更多
Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and ...Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and construct a predictive model for patient survival outcomes and immunotherapy response.We curated six immunotherapy datasets representing diverse cancer types and treatment regimens.After data preprocessing,patients were stratified based on immunotherapy response.Differential gene expression analysis identified 22 genes consistently dysregulated across multiple datasets.Functional analysis provided critical insights,highlighting the enrichment of these dysregulated genes in immune response pathways and tumor microenvironment-related processes.To create a robust prognostic model,we meticulously employed a multistep approach.Initially,the identified 22 genes underwent rigorous univariate Cox regression analysis to evaluate their individual associations with patient survival outcomes.Genes showing statistical significance(p-values<0.05)at this stage advanced to the subsequent multivariate Cox regression analysis,which aimed to address potential confounding factors and collinearity among genes.From this analysis,we ultimately identified four key genes—ST6GALNAC2,SNORA65,MFAP2,and CDKN2B—that were significantly associated with patient survival outcomes.Incorporating these four key genes along with their corresponding coefficients,we constructed a predictive model.This model’s efficacy was validated through extensive Cox regression analyses,demonstrating its robustness in predicting patient survival outcomes.Furthermore,our model exhibited promising predictive capability for immunotherapy response,providing a potential tool for anticipating treatment efficacy.These findings provide insights into immunotherapy response mechanisms and suggest potential prognostic biomarkers for personalized treatment.Our study contributes to advancing cancer immunotherapy and personalized medicine.展开更多
Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancersubtype characterized by the absence of expression of estrogen receptor (ER), progesteronereceptor (PR), and human epidermal grow...Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancersubtype characterized by the absence of expression of estrogen receptor (ER), progesteronereceptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC exhibitsresistance to hormone and HER2-targeted therapy, along with a higher incidence ofrecurrence and poorer prognosis. Therefore, exploring the molecular features of TNBC andconstructing prognostic models are of significant importance for personalized treatmentstrategies. Methods: In this research, bioinformatics approaches were utilized to screendifferentially expressed genes in 405 TNBC cases and 128 normal tissue samples from 8 GEOdatasets. Key core genes and signaling pathways were further identified. Additionally, aprognostic model incorporating seven genes was established using clinical and pathologicalinformation from 169 TNBC cases in the TCGA dataset, and its predictive performance wasevaluated. Results: Functional analysis revealed dysregulated biological processes such asDNA replication, cell cycle, and mitotic chromosome separation in TNBC. Protein-proteininteraction network analysis identified ten core genes, including BUB1, BUB1B, CDK1,CDC20, CDCA8, CCNB1, CCNB2, KIF2C, NDC80, and CENPF. A prognostic model consistingof seven genes (EXO1, SHCBP1, ABRACL, DMD, THRB, DCDC2, and APOD) was establishedusing a step-wise Cox regression analysis. The model demonstrated good predictiveperformance in distinguishing patients' risk. Conclusion: This research provides importantinsights into the molecular characteristics of TNBC and establishes a reliable prognosticmodel for understanding its pathogenesis and predicting prognosis. These findingscontribute to the advancement of personalized treatment for TNBC.展开更多
Background:N7-methylguanosine(m7G)-related plays an important role in the occurrence and development of tumors,and some recent studies have pointed out that long non-coding RNA is involved in the occurrence and develo...Background:N7-methylguanosine(m7G)-related plays an important role in the occurrence and development of tumors,and some recent studies have pointed out that long non-coding RNA is involved in the occurrence and development of various cancers.However,there is no literature on how m7G-related lncRNAs predict the prognosis of bladder cancer.The purpose of this study was to develop a predictive feature based on long non-coding RNA(lncRNAs)associated with m7G to predict the prognosis of patients with bladder cancer.Methods:We obtained the RNA transcriptome data and clinical data of bladder cancer patients through the cancer genome atlas database,and obtained the lncRNAs related to m7G by co-expression analysis and Cox regression analysis.Then the signature was evaluated by receiver operating characteristic curve and nomogram,and single sample gene set concentration analysis was used to study the correlation between the predictive model and tumor immune microenvironment in high-risk and low-risk groups.Results:We got a total of 5 m7G related lncRNA(MAFG-DT,AP003352.1,AC242842.1,AC024060.1,FAM111A-DT),which may be related to the prognosis of patients with bladder cancer.For predicting 1-,3-and 5-year survival rates,the area under the receiver operating characteristic curve was 0.757 and 0.722 and 0.739,respectively.Kaplan-Meier analysis showed that the prognosis of bladder cancer patients in high risk group was worse than that in low risk group.Immunoassay showed that the immune function of patients with bladder cancer in high risk group was more active.Conclusion:Prognostic markers based on m7G-related lncRNAs can be used to independently predict the prognosis of patients with bladder cancer and provide therapeutic targets for future clinical treatment.展开更多
BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 6...BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.展开更多
基金supported by grants from the Shanghai Rising-Star Program(19QA1408700)the National Natural Science Founda-tion of China(81972575 and 81521091)Clinical Research Plan of SHDC(SHDC2020CR5007)。
文摘Background:Early singular nodular hepatocellular carcinoma(HCC)is an ideal surgical indication in clinical practice.However,almost half of the patients have tumor recurrence,and there is no reliable prognostic prediction tool.Besides,it is unclear whether preoperative neoadjuvant therapy is necessary for patients with early singular nodular HCC and which patient needs it.It is critical to identify the patients with high risk of recurrence and to treat these patients preoperatively with neoadjuvant therapy and thus,to improve the outcomes of these patients.The present study aimed to develop two prognostic models to preoperatively predict the recurrence-free survival(RFS)and overall survival(OS)in patients with singular nodular HCC by integrating the clinical data and radiological features.Methods:We retrospective recruited 211 patients with singular nodular HCC from December 2009 to January 2019 at Eastern Hepatobiliary Surgery Hospital(EHBH).They all met the surgical indications and underwent radical resection.We randomly divided the patients into the training cohort(n=132)and the validation cohort(n=79).We established and validated multivariate Cox proportional hazard models by the preoperative clinicopathologic factors and radiological features for association with RFS and OS.By analyzing the receiver operating characteristic(ROC)curve,the discrimination accuracy of the models was compared with that of the traditional predictive models.Results:Our RFS model was based on HBV-DNA score,cirrhosis,tumor diameter and tumor capsule in imaging.RFS nomogram had fine calibration and discrimination capabilities,with a C-index of 0.74(95%CI:0.68-0.80).The OS nomogram,based on cirrhosis,tumor diameter and tumor capsule in imaging,had fine calibration and discrimination capabilities,with a C-index of 0.81(95%CI:0.74-0.87).The area under the receiver operating characteristic curve(AUC)of our model was larger than that of traditional liver cancer staging system,Korea model and Nomograms in Hepatectomy Patients with Hepatitis B VirusRelated Hepatocellular Carcinoma,indicating better discrimination capability.According to the models,we fitted the linear prediction equations.These results were validated in the validation cohort.Conclusions:Compared with previous radiography model,the new-developed predictive model was concise and applicable to predict the postoperative survival of patients with singular nodular HCC.Our models may preoperatively identify patients with high risk of recurrence.These patients may benefit from neoadjuvant therapy which may improve the patients’outcomes.
基金Supported by National Natural Science Foundation of China,No.81802777.
文摘BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
文摘BACKGROUND Liver metastases(LM)is the primary factor contributing to unfavorable outcomes in patients diagnosed with gastric cancer(GC).The objective of this study is to analyze significant prognostic risk factors for patients with GCLM and develop a reliable nomogram model that can accurately predict individualized prognosis,thereby enhancing the ability to evaluate patient outcomes.AIM To analyze prognostic risk factors for GCLM and develop a reliable nomogram model to accurately predict individualized prognosis,thereby enhancing patient outcome assessment.METHODS Retrospective analysis was conducted on clinical data pertaining to GCLM(type III),admitted to the Department of General Surgery across multiple centers of the Chinese PLA General Hospital from January 2010 to January 2018.The dataset was divided into a development cohort and validation cohort in a ratio of 2:1.In the development cohort,we utilized univariate and multivariate Cox regression analyses to identify independent risk factors associated with overall survival in GCLM patients.Subsequently,we established a prediction model based on these findings and evaluated its performance using receiver operator characteristic curve analysis,calibration curves,and clinical decision curves.A nomogram was created to visually represent the prediction model,which was then externally validated using the validation cohort.RESULTS A total of 372 patients were included in this study,comprising 248 individuals in the development cohort and 124 individuals in the validation cohort.Based on Cox analysis results,our final prediction model incorporated five independent risk factors including albumin levels,primary tumor size,presence of extrahepatic metastases,surgical treatment status,and chemotherapy administration.The 1-,3-,and 5-years Area Under the Curve values in the development cohort are 0.753,0.859,and 0.909,respectively;whereas in the validation cohort,they are observed to be 0.772,0.848,and 0.923.Furthermore,the calibration curves demonstrated excellent consistency between observed values and actual values.Finally,the decision curve analysis curve indicated substantial net clinical benefit.CONCLUSION Our study identified significant prognostic risk factors for GCLM and developed a reliable nomogram model,demonstrating promising predictive accuracy and potential clinical benefit in evaluating patient outcomes.
文摘Objective Triple-negative breast cancer(TNBC)is the breast cancer subtype with the worst prognosis,and lacks effective therapeutic targets.Colony stimulating factors(CSFs)are cytokines that can regulate the production of blood cells and stimulate the growth and development of immune cells,playing an important role in the malignant progression of TNBC.This article aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes(CRGs),and analyze the sensitivity of TNBC patients to immunotherapy and drug therapy.Methods We downloaded CRGs from public databases and screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database.Through LASSO Cox regression analysis,we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the colony stimulating factors-related genes risk score(CRRS).We further analyzed the correlation between CRRS and patient prognosis,clinical features,tumor microenvironment(TME)in both high-risk and low-risk groups,and evaluated the relationship between CRRS and sensitivity to immunotherapy and drug therapy.Results We identified 842 differentially expressed CRGs in breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model.Kaplan-Meier survival curves,time-dependent receiver operating characteristic curves,and other analyses confirmed that TNBC patients with high CRRS had shorter overall survival,and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.Moreover,patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic drugs such as 5-fluorouracil,ipatasertib,and paclitaxel.Conclusion We have developed a CRRS-based prognostic model composed of 13 differentially expressed CRGs,which may serve as a useful tool for predicting the prognosis of TNBC patients and guiding clinical treatment.Moreover,the key genes within this model may represent potential molecular targets for future therapies of TNBC.
基金Supported by National Natural Science Foundation of China,No.82100581。
文摘BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
文摘Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.
基金Supported by National Natural Science Foundation of China,No.81960877University Innovation Fund of Gansu Province,No.2021A-076+5 种基金Gansu Province Science and Technology Plan(Innovation Base and Talent Plan),No.21JR7RA561Natural Science Foundation of Gansu Province,No.21JR1RA267 and No.22JR5RA582Education Technology Innovation Project of Gansu Province,No.2022A-067Innovation Fund of Higher Education of Gansu Province,No.2023A-088Gansu Province Science and Technology Plan International Cooperation Field Project,No.23YFWA0005and Open Project of Key Laboratory of Dunhuang Medicine and Transformation of Ministry of Education,No.DHYX21-07,No.DHYX22-05,and No.DHYX21-01.
文摘BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications.Cell demise mechanisms play a pivotal role in breast cancer pathogenesis,with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence.AIM To investigate the impact of ATP-induced cell death(AICD)on breast cancer,enhancing our understanding of its mechanism.METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature,underpinning the establishment of a prognostic model.Simultaneously,a microRNA(miRNA)prognostic model was constructed that mirrored the gene-based prognostic model.Distinctions between high-and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized,with the aim of delineating common influence mechanisms,substantiated through enrichment analysis and immune infiltration assessment.RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs:P2X purinoceptor 4,pannexin 1,caspase 7,and cyclin 2.The miRNA prognostic model integrated four pivotal miRNAs:hsa-miR-615-3p,hsa-miR-519b-3p,hsa-miR-342-3p,and hsa-miR-324-3p.B cells,CD4+T cells,CD8+T cells,endothelial cells,and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes.Furthermore,Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways,while miRNA risk scores significantly enriched 29 signaling pathways,with 16 pathways being jointly enriched.CONCLUSION Of paramount significance,distinct mRNA and miRNA signature models were devised tailored to AICD,both potentially autonomous prognostic factors.This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools,offering an unparalleled window for innovative interventions.Essentially,this paper reveals the hitherto enigmatic link between AICD and breast cancer,potentially leading to revolutionary progress in personalized oncology.
文摘BACKGROUND The development and progression of hepatocellular carcinoma(HCC)have been reported to be associated with immune-related genes and the tumor microenvir-onment.Nevertheless,there are not enough prognostic biomarkers and models available for clinical use.Based on seven prognostic genes,this study calculated overall survival in patients with HCC using a prognostic survival model and revealed the immune status of the tumor microenvironment(TME).AIM To develop a novel immune cell-related prognostic model of HCC and depict the basic profile of the immune response in HCC.METHODS We obtained clinical information and gene expression data of HCC from The Cancer Genome Atlas(TCGA)and International Cancer Genome Consortium(ICGC)datasets.TCGA and ICGC datasets were used for screening prognostic genes along with developing and validating a seven-gene prognostic survival model by weighted gene coexpression network analysis and least absolute shrinkage and selection operator regression with Cox regression.The relative analysis of tumor mutation burden(TMB),TME cell infiltration,immune check-points,immune therapy,and functional pathways was also performed based on prognostic genes.RESULTS Seven prognostic genes were identified for signature construction.Survival receiver operating characteristic curve analysis showed the good performance of survival prediction.TMB could be regarded as an independent factor in HCC survival prediction.There was a significant difference in stromal score,immune score,and estimate score between the high-risk and low-risk groups stratified based on the risk score derived from the seven-gene prognostic model.Several immune checkpoints,including VTCN1 and TNFSF9,were found to be associated with the seven prognostic genes and risk score.Different combinations of checkpoint blockade targeting inhibitory CTLA4 and PD1 receptors and potential chemotherapy drugs hold great promise for specific HCC therapies.Potential pathways,such as cell cycle regulation and metabolism of some amino acids,were also identified and analyzed.CONCLUSION The novel seven-gene(CYTH3,ENG,HTRA3,PDZD4,SAMD14,PGF,and PLN)prognostic model showed high predictive efficiency.The TMB analysis based on the seven genes could depict the basic profile of the immune response in HCC,which might be worthy of clinical application.
文摘The present study aims to establish a relationship between serum AMH levels and age in a large group of women living in Bulgaria, as well as to establish reference age-specific AMH levels in women that would serve as an initial estimate of ovarian age. A total of 28,016 women on the territory of the Republic of Bulgaria were tested for serum AMH levels with a median age of 37.0 years (interquartile range 32.0 to 41.0). For women aged 20 - 29 years, the Bulgarian population has relatively high median levels of AMH, similar to women of Asian origin. For women aged 30 - 34 years, our results are comparable to those of women living in Western Europe. For women aged 35 - 39 years, our results are comparable to those of women living in the territory of India and Kenya. For women aged 40 - 44 years, our results were lower than those for women from the Western European and Chinese populations, close to the Indian and higher than Korean and Kenya populations, respectively. Our results for women of Bulgarian origin are also comparable to US Latina women at age 30, 35 and 40 ages. On the base on constructed a statistical model to predicting the decline in AMH levels at different ages, we found non-linear structure of AMH decline for the low AMH 3.5) the dependence of the decline of AMH on age was confirmed as linear. In conclusion, we evaluated the serum level of AMH in Bulgarian women and established age-specific AMH percentile reference values based on a large representative sample. We have developed a prognostic statistical model that can facilitate the application of AMH in clinical practice and the prediction of reproductive capacity and population health.
基金This work was supported by the Special Support Program of Sun Yat-sen University Cancer Center(PT19020401)the Science and Technology Planning Project of Guangzhou,China(202002030205)the Clinical Oncology Foundation of Chinese Society of Clinical Oncology(Y-XD2019-124).
文摘Adult T-cell lymphoblastic lymphoma(T-LBL)is a rare and aggressive subtype of non-Hodgkin’s lymphoma that differs from pediatric T-LBL and has a worse prognosis.Due to its rarity,little is known about the genetic and molecular characteristics,optimal treatment modalities,and prognostic factors of adult T-LBL.Therefore,we summarized the existing studies to comprehensively discuss the above issues in this review.Genetic mutations of NOTCH1/FBXW7,PTEN,RAS,and KMT2D,together with abnormal activation of signaling pathways,such as the JAK-STAT signaling pathway were described.We also discussed the therapeutic modalities.Once diagnosed,adult T-LBL patients should receive intensive or pediatric acute lymphoblastic leukemia regimen and central nervous system prophylaxis as soon as possible,and cranial radiation-free protocols are appropriate.Mediastinal radiotherapy improves clinical outcomes,but adverse events are of concern.Hematopoietic stem cell transplantation may be considered for adult T-LBL patients with high-risk factors or those with relapsed/refractory disease.Besides,several novel prognostic models have been constructed,such as the 5-miRNAs-based classifier,11-gene-based classifier,and 4-CpG-based classifier,which have presented significant prognostic value in adult T-LBL.
基金supported by the National Natural Science Foundation of China(No.82072795).
文摘Objective To construct and verificate an RNA-binding protein(RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.Methods RNA-sequencing and clinic pathological data of glioma patients from The Cancer Genome Atlas(TCGA)database and the Chinese Glioma Genome Atlas database(CGGA)were downloaded.The aberrantly expressed RBPs were investigated between gliomas and normal samples in TCGA database.We then identified prognosis related hub genes and constructed a prognostic model.This model was further validated in the CGGA-693 and CGGA-325 cohorts.Results Totally 174 differently expressed genes-encoded RBPs were identified,containing 85 down-regulated and 89 up-regulated genes.We identified five genes-encoded RBPs(ERI1,RPS2,BRCA1,NXT1,and TRIM21)as prognosis related key genes and constructed a prognostic model.Overall survival(OS)analysis revealed that the patients in the high-risk subgroup based on the model were worse than those in the low-risk subgroup.The area under the receiver operator characteristic curve(AUC)of the prognostic model was 0.836 in the TCGA dataset and 0.708 in the CGGA-693 dataset,demonstrating a favorable prognostic model.Survival analyses of the five RBPs in the CGGA-325 cohort validated the findings.A nomogram was constructed based on the five genes and validated in the TCGA cohort,confirming a promising discriminating ability for gliomas.Conclusion The prognostic model of the five RBPs might serve as an independent prognostic algorithm for gliomas.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is the most common type of primary liver cancer.With highly invasive biological characteristics and a lack of obvious clinical manifestations,HCC usually has a poor prognosis and ranks fourth in cancer mortality.The aetiology and exact molecular mechanism of primary HCC are still unclear.AIM To select the characteristic genes that are significantly associated with the prognosis of HCC patients and construct a prognosis model of this malignancy.METHODS By comparing the gene expression levels of patients with different cancer grades of HCC,we screened out differentially expressed genes associated with tumour grade.By protein-protein interaction(PPI)network analysis,we obtained the top 2 PPI networks and hub genes from these differentially expressed genes.By using least absolute shrinkage and selection operator Cox regression,13 prognostic genes were selected for feature extraction,and a prognostic risk model of HCC was established.RESULTS The model had significant prognostic ability in HCC.We also analysed the biological functions of these prognostic genes.CONCLUSION By comparing the gene profiles of patients with different stages of HCC,We have constructed a prognosis model consisting of 13 genes that have important prognostic value.This model has good application value and can be explained clinically.
基金supported by the Public Health Research Project in Futian District,Shenzhen(Grant Nos.FTWS2020026,FTWS2021073).
文摘Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential.Methods:First,gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO),and glycolysis-related genes were obtained from the Molecular Signatures Database(MSigDB).Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained,which were used in nonnegative matrix factorization(NMF)to identify clusters.The correlation between clusters and clinical features was discussed,and the differentially expressed genes(DEGs)between the two clusters were investigated.Based on the DEGs,we investigated the biological differences between clusters,including immune cell infiltration,mutation,tumor immune dysfunction and exclusion,immune function,and checkpoint genes.To establish the prognostic model,the genes were filtered based on univariable Cox regression,LASSO,and multivariable Cox regression.Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model.A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting.Result:The genes obtained from MSigDB were enriched in glycolysis functions.Two clusters were identified by NMF analysis based on 272 glycolysis-related genes,and a prognostic model based on DEGs between the two clusters was finally established.The prognostic model consisted of LAMPS,SPRN,ATOH1,TANC1,ETV1,TDRD1,KLK14,MESP2,POSTN,CRIP2,NAT1,AKR7A3,PODXL,CARTPT,and PCDHGB2.All sample,training,and test cohorts from The Cancer Genome Atlas(TCGA)and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups.The area under the ROC curve showed great performance of this prognostic model.Conclusion:A prognostic model based on glycolysis-related genes was established,with great performance and potential significance to the clinical application.
基金National Natural Science Foundation Project of China (No.81860793)Natural Science Foundation Project of Guangxi Province (No.2020JJA140375)Guangxi Graduate Education Innovation Program (No.YCSY2022027)。
文摘Cuproptosis is a newly discovered form of apoptotic process that is thought to play an important role in cancer therapy.Long non-coding RNA(lncRNA)is involved in regulating many physiological and pathological activities of cells.The aim of this study was to investigate the prognostic significance of Cuproptosis-associated lncRNAs in osteosarcoma.Methods:The Gene expression profiling of osteosarcoma samples versus normal samples and corresponding clinical data were downloaded from the public databases UCSC Xena and GTEx,and the cuproptosis gene was obtained from the published literature,the prognostic model of osteosarcoma cuproptosis-related lncRNA was constructed by using coexpression network,minimum absolute contraction and selection algorithm(LASSO)and Cox regression model.Receiver operating characteristic(ROC)curves and nomograms were used to assess the predictive power of the model.Single-sample gene set enrichment analysis(ssGSEA)was used to explore the relationship between osteosarcoma immune cells and function in different risk groups.Results:181 cuproptosis-related lncRNAs were obtained by co-expression analysis of 19 cuproptosis genes collected.Ten lncRNAs were screened out by differential analysis and single-factor Cox analysis.Three cuproptosis-related lncrnas(AC124798.1,AC090152.1,AC090559.1)were screened by Lasso and multivariate Cox regression to construct the prognostic model.Patients were divided into high and low risk groups based on the median risk score.The results of overall survival,risk score distribution and survival status in the lowrisk group were better than those in the high-risk group,and were verified in the internal data.Univariate and multivariate Cox regression analyses showed that risk score was an independent prognostic factor.Nomograms and ROC curves showed that the prognostic model had good predictive ability.The results of ssGSEA suggest that immune cells and function may be inhibited in the high-risk group.Conclusion:The 3 cuproptosis-related lncRNAs may be helpful to guide the prognosis of osteosarcoma patients and provide some theoretical basis for clinical decision.
基金Key Project of Natural Science Research in Anhui Universities (No.KJ2021A0774)National Student Innovation and Entrepreneurship Training Program Grant (No.202110367037)。
文摘Objective:To identify the prognosis of hepatocellular carcinoma(HCC)and the effect of anti-cancer drug therapy by screening glutamine metabolism-related signature genes because glutamine metabolism plays an important role in tumor development.Methods:We obtained gene expression samples of normal liver tissue and hepatocellular carcinoma from the TCGA database and GEO database,screened for differentially expressed glutamine metabolismrelated genes(GMRGs),constructed a prognostic model by lasso regression and step cox analysis,and assessed the differences in drug sensitivity between high-and low-risk groups.Results:We screened 23 differentially expressed GMRGs by differential analysis,and correlation loop plots and PPI protein interaction networks indicated that these differential genes were strongly correlated.The four most characterized genes(CAD,PPAT,PYCR3,and SLC7A11)were obtained by lasso regression and step cox,and a risk model was constructed and confirmed to have reliable predictive power in the TCGA dataset and GEO dataset.Finally,immunotherapy is better in the high-risk group than in the low-risk group,and chemotherapy and targeted drug therapy are better in the low-risk group than in the high-risk group.Conclusion:In conclusion,we have developed a reliable prognostic risk model characterized by glutamine metabolism-related genes,which may provide a viable basis for the prognosis and Treatment options of HCC patients.
文摘Tumor immunotherapy has emerged as a promising method in cancer treatment,but patient responses vary,necessitating personalized strategies and prognostic biomarkers.This study aimed to identify prognostic factors and construct a predictive model for patient survival outcomes and immunotherapy response.We curated six immunotherapy datasets representing diverse cancer types and treatment regimens.After data preprocessing,patients were stratified based on immunotherapy response.Differential gene expression analysis identified 22 genes consistently dysregulated across multiple datasets.Functional analysis provided critical insights,highlighting the enrichment of these dysregulated genes in immune response pathways and tumor microenvironment-related processes.To create a robust prognostic model,we meticulously employed a multistep approach.Initially,the identified 22 genes underwent rigorous univariate Cox regression analysis to evaluate their individual associations with patient survival outcomes.Genes showing statistical significance(p-values<0.05)at this stage advanced to the subsequent multivariate Cox regression analysis,which aimed to address potential confounding factors and collinearity among genes.From this analysis,we ultimately identified four key genes—ST6GALNAC2,SNORA65,MFAP2,and CDKN2B—that were significantly associated with patient survival outcomes.Incorporating these four key genes along with their corresponding coefficients,we constructed a predictive model.This model’s efficacy was validated through extensive Cox regression analyses,demonstrating its robustness in predicting patient survival outcomes.Furthermore,our model exhibited promising predictive capability for immunotherapy response,providing a potential tool for anticipating treatment efficacy.These findings provide insights into immunotherapy response mechanisms and suggest potential prognostic biomarkers for personalized treatment.Our study contributes to advancing cancer immunotherapy and personalized medicine.
文摘Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancersubtype characterized by the absence of expression of estrogen receptor (ER), progesteronereceptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC exhibitsresistance to hormone and HER2-targeted therapy, along with a higher incidence ofrecurrence and poorer prognosis. Therefore, exploring the molecular features of TNBC andconstructing prognostic models are of significant importance for personalized treatmentstrategies. Methods: In this research, bioinformatics approaches were utilized to screendifferentially expressed genes in 405 TNBC cases and 128 normal tissue samples from 8 GEOdatasets. Key core genes and signaling pathways were further identified. Additionally, aprognostic model incorporating seven genes was established using clinical and pathologicalinformation from 169 TNBC cases in the TCGA dataset, and its predictive performance wasevaluated. Results: Functional analysis revealed dysregulated biological processes such asDNA replication, cell cycle, and mitotic chromosome separation in TNBC. Protein-proteininteraction network analysis identified ten core genes, including BUB1, BUB1B, CDK1,CDC20, CDCA8, CCNB1, CCNB2, KIF2C, NDC80, and CENPF. A prognostic model consistingof seven genes (EXO1, SHCBP1, ABRACL, DMD, THRB, DCDC2, and APOD) was establishedusing a step-wise Cox regression analysis. The model demonstrated good predictiveperformance in distinguishing patients' risk. Conclusion: This research provides importantinsights into the molecular characteristics of TNBC and establishes a reliable prognosticmodel for understanding its pathogenesis and predicting prognosis. These findingscontribute to the advancement of personalized treatment for TNBC.
文摘Background:N7-methylguanosine(m7G)-related plays an important role in the occurrence and development of tumors,and some recent studies have pointed out that long non-coding RNA is involved in the occurrence and development of various cancers.However,there is no literature on how m7G-related lncRNAs predict the prognosis of bladder cancer.The purpose of this study was to develop a predictive feature based on long non-coding RNA(lncRNAs)associated with m7G to predict the prognosis of patients with bladder cancer.Methods:We obtained the RNA transcriptome data and clinical data of bladder cancer patients through the cancer genome atlas database,and obtained the lncRNAs related to m7G by co-expression analysis and Cox regression analysis.Then the signature was evaluated by receiver operating characteristic curve and nomogram,and single sample gene set concentration analysis was used to study the correlation between the predictive model and tumor immune microenvironment in high-risk and low-risk groups.Results:We got a total of 5 m7G related lncRNA(MAFG-DT,AP003352.1,AC242842.1,AC024060.1,FAM111A-DT),which may be related to the prognosis of patients with bladder cancer.For predicting 1-,3-and 5-year survival rates,the area under the receiver operating characteristic curve was 0.757 and 0.722 and 0.739,respectively.Kaplan-Meier analysis showed that the prognosis of bladder cancer patients in high risk group was worse than that in low risk group.Immunoassay showed that the immune function of patients with bladder cancer in high risk group was more active.Conclusion:Prognostic markers based on m7G-related lncRNAs can be used to independently predict the prognosis of patients with bladder cancer and provide therapeutic targets for future clinical treatment.
文摘BACKGROUND Gastric cancer(GC)is a common malignancy of the digestive system.According to global 2018 cancer data,GC has the fifth-highest incidence and the thirdhighest fatality rate among malignant tumors.More than 60%of GC are linked to infection with Helicobacter pylori(H.pylori),a gram-negative,active,microaerophilic,and helical bacterium.This parasite induces GC by producing toxic factors,such as cytotoxin-related gene A,vacuolar cytotoxin A,and outer membrane proteins.Ferroptosis,or iron-dependent programmed cell death,has been linked to GC,although there has been little research on the link between H.pylori infection-related GC and ferroptosis.AIM To identify coregulated differentially expressed genes among ferroptosis-related genes(FRGs)in GC patients and develop a ferroptosis-related prognostic model with discrimination ability.METHODS Gene expression profiles of GC patients and those with H.pylori-associated GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus(GEO)databases.The FRGs were acquired from the FerrDb database.A ferroptosis-related gene prognostic index(FRGPI)was created using least absolute shrinkage and selection operator–Cox regression.The predictive ability of the FRGPI was validated in the GEO cohort.Finally,we verified the expression of the hub genes and the activity of the ferroptosis inducer FIN56 in GC cell lines and tissues.RESULTS Four hub genes were identified(NOX4,MTCH1,GABARAPL2,and SLC2A3)and shown to accurately predict GC and H.pylori-associated GC.The FRGPI based on the hub genes could independently predict GC patient survival;GC patients in the high-risk group had considerably worse overall survival than did those in the low-risk group.The FRGPI was a significant predictor of GC prognosis and was strongly correlated with disease progression.Moreover,the gene expression levels of common immune checkpoint proteins dramatically increased in the highrisk subgroup of the FRGPI cohort.The hub genes were also confirmed to be highly overexpressed in GC cell lines and tissues and were found to be primarily localized at the cell membrane.The ferroptosis inducer FIN56 inhibited GC cell proliferation in a dose-dependent manner.CONCLUSION In this study,we developed a predictive model based on four FRGs that can accurately predict the prognosis of GC patients and the efficacy of immunotherapy in this population.