With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrie...With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrier generation in a capacitor often makes an underestimation of the program/erase speed. In this paper, illumination around a memory capacitor is proposed to enhance the generation of minority carriers so that an accurate measurement of the program/erase speed can be achieved. From the dependence of the inversion capacitance on frequency, a time constant is extracted to quantitatively characterize the formation of the inversion layer. Experimental results show that under a high enough illumination, this time constant is greatly reduced and the measured minority carrier-related program/erase speed is in agreement with the reported value in a transistor structure.展开更多
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934200 and 2011CBA00600)the National Natural Science Foundation of China (Grant Nos. 7360825403, 61176080, and 61176073)the National Science and Technology Major Project of China (Grant No. 2009ZX02023-005)
文摘With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrier generation in a capacitor often makes an underestimation of the program/erase speed. In this paper, illumination around a memory capacitor is proposed to enhance the generation of minority carriers so that an accurate measurement of the program/erase speed can be achieved. From the dependence of the inversion capacitance on frequency, a time constant is extracted to quantitatively characterize the formation of the inversion layer. Experimental results show that under a high enough illumination, this time constant is greatly reduced and the measured minority carrier-related program/erase speed is in agreement with the reported value in a transistor structure.