This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g...This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.展开更多
A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy...A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.展开更多
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ...Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and wate...The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.展开更多
A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' pa...A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' parameters are available from the geological database of the mine. The objective is to minimize the deviation of the average ore grade of blasted blocks from the standard ore grade required by the mill. Transportation ability constraint. production quantity demand constraint. minimum safety bench constraint. block size constraint and block, bench precedence constraints are considered in forming the programming model. This model has more practical objective function and reasonable constraints compared with the existing model for this kind of problems.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ...This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.展开更多
A dynamic food chain model and program, DYFOM 95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food chain but also to Chinese food chain. ...A dynamic food chain model and program, DYFOM 95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food chain but also to Chinese food chain. The following processes, caused by accident release which will make an impact on radionuclide concentration in the edible parts of vegetable were considered: dry and wet deposition interception and initial retention, translocation, percolation, root uptake and tillage. Activity intake rate of animals, effects of processing and activity intake of human through ingestion pathway ware also considered in calculations. The effects of leaf area index LAI of vegetable were considered in dry deposition model. A method for calculating the contribution of rain with different period and different intensity to total wet deposition was established. The program contains 1 main code and 5 sub codes to calculate dry and wet deposition on surface of vegetable and soil, translocation of nuclides in vegetable, nuclide concentration in the edible parts of vegetable and in animal products and activity intake of human and so on.展开更多
The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper...The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.展开更多
At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive...At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.展开更多
Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations betw...Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.展开更多
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio...A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.展开更多
A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block mode...A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.展开更多
The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark a...The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determines control trends that can be used to improve existing algorithms. The optimal combined charge sustaining fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6 L 2019 Chevrolet Blazer.展开更多
Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level...Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.展开更多
Background: Preventing anterior cruciate ligament(ACL) injuries is important to avoid long-term adverse health consequences. Identifying barriers to implementation of these prevention programs is crucial to reducing t...Background: Preventing anterior cruciate ligament(ACL) injuries is important to avoid long-term adverse health consequences. Identifying barriers to implementation of these prevention programs is crucial to reducing the incidence of these injuries. Our purpose was to identify barriers of implementation for ACL injury prevention programs and suggest mechanisms for reducing the barriers through application of a SocioEcological Model(SEM).Methods: Studies investigating ACL prevention program effectiveness were searched in Medline via PubMed and the Cochrane Library, and a subsequent review of the references of the identified articles, yielded 15 articles total. Inclusion criteria encompassed prospective controlled trials, published in English, with ACL injuries as the primary outcome. Studies were independently appraised by 2 reviewers for methodological quality using the PEDro scale. Barriers to implementation were identified when reported in at least 2 separate studies. A SEM was used to suggest ways to reduce the identified barriers.Results: Five barriers were identified: motivation, time requirements, skill requirements for program facilitators, compliance, and cost. The SEM suggested ways to minimize the barriers at all levels of the model from the individual through policy levels.Conclusion: Identification of barriers to program implementation and suggesting how to reduce them through the SEM is a critical first step toward enabling ACL prevention programs to be more effective and ultimately reducing the incidence of these injuries.展开更多
Model transformation is one of the prominent features and the rising research area of Model Driven Engineering (MDE). MDE promotes models to primary artifacts that drive the whole development process. This paper prese...Model transformation is one of the prominent features and the rising research area of Model Driven Engineering (MDE). MDE promotes models to primary artifacts that drive the whole development process. This paper presents the model transformation approach for textual model oriented programs Umple (UML Programming Language) to generate android applications (apps). The proposed approach improved the generation of android source code by using Drools transformation rules and introducing new concern in model driven mobile engineering. The major objective of proposed transformation approach intends to address consistency between source and target model and also intends to handle productivity issues in model driven software development. The main results of model transformation approach are Java class for model layer, XML file for view layer and android activity class for controller layer. Results show that proposed approach achieves high consistency between source and target model and also improves model transformation productivity.展开更多
The refugee immigration problem can be considered as a special “transportation problem”. Linear Programming Model is built, where two objectives with weight in the objective function, for the shortest routes that th...The refugee immigration problem can be considered as a special “transportation problem”. Linear Programming Model is built, where two objectives with weight in the objective function, for the shortest routes that the refugees go along and the minimum number of refugees stayed in each country. An example of EU is introduced and calculated on Lingo software. The results show that the model is available to solve the refugee immigration problem in different scale.展开更多
文摘This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.
文摘A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters.
文摘Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金supported by the Public Welfare Industry Special Fund Project of the Ministry of Water Resources of China (Grant No. 200701028)the Humanities and Social Science Foundation Program of Hohai University (Grant No. 2008421411)
文摘The principal-subordinate hierarchical multi-objective programming model of initial water rights allocation was developed based on the principle of coordinated and sustainable development of different regions and water sectors within a basin. With the precondition of strictly controlling maximum emissions rights, initial water rights were allocated between the first and the second levels of the hierarchy in order to promote fair and coordinated development across different regions of the basin and coordinated and efficient water use across different water sectors, realize the maximum comprehensive benefits to the basin, promote the unity of quantity and quality of initial water rights allocation, and eliminate water conflict across different regions and water sectors. According to interactive decision-making theory, a principal-subordinate hierarchical interactive iterative algorithm based on the satisfaction degree was developed and used to solve the initial water rights allocation model. A case study verified the validity of the model.
文摘A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' parameters are available from the geological database of the mine. The objective is to minimize the deviation of the average ore grade of blasted blocks from the standard ore grade required by the mill. Transportation ability constraint. production quantity demand constraint. minimum safety bench constraint. block size constraint and block, bench precedence constraints are considered in forming the programming model. This model has more practical objective function and reasonable constraints compared with the existing model for this kind of problems.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
基金Project (Nos. 60174009 and 70071017) supported by the NationalNatural Science Foundation of China
文摘This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling.
文摘A dynamic food chain model and program, DYFOM 95, for predicting the radiological consequences of nuclear accident has been developed, which is not only suitable to the West food chain but also to Chinese food chain. The following processes, caused by accident release which will make an impact on radionuclide concentration in the edible parts of vegetable were considered: dry and wet deposition interception and initial retention, translocation, percolation, root uptake and tillage. Activity intake rate of animals, effects of processing and activity intake of human through ingestion pathway ware also considered in calculations. The effects of leaf area index LAI of vegetable were considered in dry deposition model. A method for calculating the contribution of rain with different period and different intensity to total wet deposition was established. The program contains 1 main code and 5 sub codes to calculate dry and wet deposition on surface of vegetable and soil, translocation of nuclides in vegetable, nuclide concentration in the edible parts of vegetable and in animal products and activity intake of human and so on.
文摘The developments of modern mathematics and computer science make artificial neural networks become most useful tools in wide range of fields. Modeling methods of artificial neural networks are described in this paper. The programming technique by using Matlab neural networks toolbox is discussed. The application in Material Hot Working of neural networks is also introduced.
文摘At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.
文摘Estimation of the rock mass modulus of deformation(Em)is one of the most important design parameters in designing many structures in and on rock.This parameter can be obtained by in situ tests,empirical relations between deformation modulus and rock mass classifcation,and estimating from laboratory tests results.In this paper,a back analysis calculation is performed to present an equation for estimation of the rock mass modulus of deformation using genetic programming(GP)and numerical modeling.A database of 40,960 datasets,including vertical stress(rz),horizontal to vertical stresses ratio(k),Poisson’s ratio(m),radius of circular tunnel(r)and wall displacement of circular tunnel on the horizontal diameter(d)for input parameters and modulus of deformation for output,was established.The selected parameters are easy to determine and rock mass modulus of deformation can be obtained from instrumentation data of any size circular galleries.The resulting RMSE of 0.86 and correlation coeffcient of97%of the proposed equation demonstrated the capability of the computer program(CP)generated by GP.
基金National Defense Advanced Research Foundation of China
文摘A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.
文摘A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.
文摘The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determines control trends that can be used to improve existing algorithms. The optimal combined charge sustaining fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6 L 2019 Chevrolet Blazer.
基金supported by the National Natural Science Foundationof China (70771080)the National Science Foundation of Hubei Province(20091107)Hubei Province Key Laboratory of Systems Science in Metallurgical Process (B201003)
文摘Partial cooperation models are studied for many years to solve the bilevel programming problems where the follower’s optimal reaction is not unique. However, in these existed models, the follower’s cooperation level does not depend on the leader’s decision. A new model is proposed to solve this deficiency. It is proved the feasibility of the new model when the reaction set of the lower level is lower semicontinuous. And the numerical results show that the new model has optimal solutions when the reaction set of the lower level is discrete, lower semi-continuous and non-lower semi-continuous.
文摘Background: Preventing anterior cruciate ligament(ACL) injuries is important to avoid long-term adverse health consequences. Identifying barriers to implementation of these prevention programs is crucial to reducing the incidence of these injuries. Our purpose was to identify barriers of implementation for ACL injury prevention programs and suggest mechanisms for reducing the barriers through application of a SocioEcological Model(SEM).Methods: Studies investigating ACL prevention program effectiveness were searched in Medline via PubMed and the Cochrane Library, and a subsequent review of the references of the identified articles, yielded 15 articles total. Inclusion criteria encompassed prospective controlled trials, published in English, with ACL injuries as the primary outcome. Studies were independently appraised by 2 reviewers for methodological quality using the PEDro scale. Barriers to implementation were identified when reported in at least 2 separate studies. A SEM was used to suggest ways to reduce the identified barriers.Results: Five barriers were identified: motivation, time requirements, skill requirements for program facilitators, compliance, and cost. The SEM suggested ways to minimize the barriers at all levels of the model from the individual through policy levels.Conclusion: Identification of barriers to program implementation and suggesting how to reduce them through the SEM is a critical first step toward enabling ACL prevention programs to be more effective and ultimately reducing the incidence of these injuries.
文摘Model transformation is one of the prominent features and the rising research area of Model Driven Engineering (MDE). MDE promotes models to primary artifacts that drive the whole development process. This paper presents the model transformation approach for textual model oriented programs Umple (UML Programming Language) to generate android applications (apps). The proposed approach improved the generation of android source code by using Drools transformation rules and introducing new concern in model driven mobile engineering. The major objective of proposed transformation approach intends to address consistency between source and target model and also intends to handle productivity issues in model driven software development. The main results of model transformation approach are Java class for model layer, XML file for view layer and android activity class for controller layer. Results show that proposed approach achieves high consistency between source and target model and also improves model transformation productivity.
文摘The refugee immigration problem can be considered as a special “transportation problem”. Linear Programming Model is built, where two objectives with weight in the objective function, for the shortest routes that the refugees go along and the minimum number of refugees stayed in each country. An example of EU is introduced and calculated on Lingo software. The results show that the model is available to solve the refugee immigration problem in different scale.