A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el...A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.展开更多
The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is present...The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.展开更多
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor...Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.展开更多
The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full...The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full landscape of association between miRNA and disease.Hence there is strong need of new computational method to identify the associations from miRNA group view.In this paper,we proposed a framework,MDA-TOEPGA,to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm,which identifies latent miRNAdisease associations from the view of functional module.To understand the miRNA functional module in diseases,the case study is presented.We have been compared MDA-TOEPGA with several state-of-the-art functional module algorithm.Experimental results showed that our method cannot only outperform classical algorithms,such as K-means,IK-means,MCODE,HC-PIN,and ClusterONE,but can also achieve an ideal overall performance in terms of a composite score consisting of f1,Sensitivity,and Accuracy.Altogether,our study showed that MDA-TOEPGA is a promising method to investigate miRNA-disease association from the landscapes of functional module.展开更多
A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forc...A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.展开更多
A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorith...A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.展开更多
In the“shared manufacturing”environment,based on fairness,shared manufacturing platforms often require manufacturing service enterprises to arrange production according to the principle of“order first,finish first...In the“shared manufacturing”environment,based on fairness,shared manufacturing platforms often require manufacturing service enterprises to arrange production according to the principle of“order first,finish first”which leads to a series of scheduling problems with fixed processing sequences.In this paper,two two-machine hybrid flow-shop problems with fixed processing sequences are studied.Each job has two tasks.The first task is flexible,which can be processed on either of the two machines,and the second task must be processed on the second machine after the first task is completed.We consider two objective functions:to minimize the makespan and tominimize the total weighted completion time.First,we show the problem for any one of the two objectives is ordinary NP-hard by polynomial-time Turing Reduction.Then,using the Continuous ProcessingModule(CPM),we design a dynamic programming algorithm for each case and calculate the time complexity of each algorithm.Finally,numerical experiments are used to analyze the effect of dynamic programming algorithms in practical operations.Comparative experiments show that these dynamic programming algorithms have comprehensive advantages over the branch and bound algorithm(a classical exact algorithm)and the discrete harmony search algorithm(a high-performance heuristic algorithm).展开更多
Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This pape...Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.展开更多
This paper studies the cost problem caused by the activity of the work-piece in the supply chain. The objective function is to find an optimal ordering that minimizes the total cost of production, transportation and s...This paper studies the cost problem caused by the activity of the work-piece in the supply chain. The objective function is to find an optimal ordering that minimizes the total cost of production, transportation and subcontracting. This paper presents a dynamic programming algorithm for the corresponding sorting problem, and finally demonstrates the feasibility of the algorithm through an example.展开更多
The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existi...The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.展开更多
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model ...Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of t...Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.展开更多
The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterpri...The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].展开更多
Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. ...Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.展开更多
The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have ve...The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have very simple structure and can be implemented easily. Forany given precision, the algorithms will terminate in a finite number of steps.展开更多
Since the point-to-set maps were introduced by Zangwill in the study of conceptual algorithms, various sufficient conditions for the algorithms to be of global convergence have been established.In this paper, the rela...Since the point-to-set maps were introduced by Zangwill in the study of conceptual algorithms, various sufficient conditions for the algorithms to be of global convergence have been established.In this paper, the relations among all these conditions are illustrated by a unified approach;still more, unlike the sufficient conditions previously given in the literature,a new necessary condition is put forward at the end of the paper, so that it implies more applications.展开更多
In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical...In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.展开更多
Accurate estimation of the drag forces generated by vegetation stems is crucial for the comprehensive assessment of the impact of aquatic vegetation on hydrodynamic processes in aquatic environments.The coupling relat...Accurate estimation of the drag forces generated by vegetation stems is crucial for the comprehensive assessment of the impact of aquatic vegetation on hydrodynamic processes in aquatic environments.The coupling relationship between vegetation layer flow velocity and vegetation drag makes precise prediction of submerged vegetation drag forces particularly challenging.The present study utilized published data on submerged vegetation drag force measurements and employed a genetic programming(GP)algorithm,a machine learning technique,to establish the connection between submerged vegetation drag forces and flow and vegetation parameters.When using the bulk velocity,U,as the reference velocity scale to define the drag coefficient,C_(d),and stem Reynolds number,the GP runs revealed that the drag coefficient of submerged vegetation is related to submergence ratio(H^(*)),aspect ratio(d^(*)),blockage ratio(ψ^(*)),and vegetation density(λ).The relation between vegetation stem drag forces and flow velocity is implicitly embedded in the definition of C_(d).Comparisons with experimental drag force measurements indicate that using the bulk velocity as the reference velocity,as opposed to using the vegetation layer average velocity,U_(v),eliminates the need for complex iterative processes to estimate U_(v)and avoids introducing additional errors associated with U_(v)estimation.This approach significantly enhances the model’s predictive capabilities and results in a simpler and more user-friendly formula expression.展开更多
基金This work was supported by the youth backbone teachers training program of Henan colleges and universities under Grant No.2016ggjs-287the project of science and technology of Henan province under Grant Nos.172102210124,202102210269the Key Scientific Research projects in Colleges and Universities in Henan(Grant No.18B460003).
文摘A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified.
文摘The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.
基金This work is supported by Ministry of Higher Education(MOHE)through Fundamental Research Grant Scheme(FRGS)(FRGS/1/2020/STG06/UTHM/03/7).
文摘Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61873089,62032007the Key Project of the Education Department of Hunan Province under Grant 20A087the Innovation Platform Open Fund Project of Hunan Provincial Education Department under Grant 20K025.
文摘The association between miRNA and disease has attracted more and more attention.Until now,existing methods for identifying miRNA related disease mainly rely on top-ranked association model,which may not provide a full landscape of association between miRNA and disease.Hence there is strong need of new computational method to identify the associations from miRNA group view.In this paper,we proposed a framework,MDA-TOEPGA,to identify miRNAdisease association based on two-objective evolutionary programming genetic algorithm,which identifies latent miRNAdisease associations from the view of functional module.To understand the miRNA functional module in diseases,the case study is presented.We have been compared MDA-TOEPGA with several state-of-the-art functional module algorithm.Experimental results showed that our method cannot only outperform classical algorithms,such as K-means,IK-means,MCODE,HC-PIN,and ClusterONE,but can also achieve an ideal overall performance in terms of a composite score consisting of f1,Sensitivity,and Accuracy.Altogether,our study showed that MDA-TOEPGA is a promising method to investigate miRNA-disease association from the landscapes of functional module.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)the Fundamental Research Funds for the Central Universities(K50511700004)
文摘A discrete differential evolution algorithm combined with the branch and bound method is developed to solve the integer linear bilevel programming problems, in which both upper level and lower level variables are forced to be integer. An integer coding for upper level variables is adopted, and then a discrete differential evolution algorithm with an improved feasibility-based comparison is developed to directly explore the integer solution at the upper level. For a given upper level integer variable, the lower level integer programming problem is solved by the existing branch and bound algorithm to obtain the optimal integer solution at the lower level. In the same framework of the algorithm, two other constraint handling methods, i.e. the penalty function method and the feasibility-based comparison method are also tested. The experimental results demonstrate that the discrete differential evolution algorithm with different constraint handling methods is effective in finding the global optimal integer solutions, but the improved constraint handling method performs better than two compared constraint handling methods.
基金the National Science Foundation(60574075, 60674108)
文摘A globally convergent infeasible-interior-point predictor-corrector algorithm is presented for the second-order cone programming (SOCP) by using the Alizadeh- Haeberly-Overton (AHO) search direction. This algorithm does not require the feasibility of the initial points and iteration points. Under suitable assumptions, it is shown that the algorithm can find an -approximate solution of an SOCP in at most O(√n ln(ε0/ε)) iterations. The iteration-complexity bound of our algorithm is almost the same as the best known bound of feasible interior point algorithms for the SOCP.
基金This work was partially supported by the Zhejiang Provincial Philosophy and Social Science Program of China(Grant No.19NDJC093YB)the National Social Science Foundation of China(Grant No.19BGL001)+1 种基金the Natural Science Foundation of Zhejiang Province of China(Grant No.LY19A010002)the Natural Science Foundation of Ningbo of China(The design of algorithms and cost-sharing rules for scheduling problems in shared manufacturing,Acceptance No.20211JCGY010241).
文摘In the“shared manufacturing”environment,based on fairness,shared manufacturing platforms often require manufacturing service enterprises to arrange production according to the principle of“order first,finish first”which leads to a series of scheduling problems with fixed processing sequences.In this paper,two two-machine hybrid flow-shop problems with fixed processing sequences are studied.Each job has two tasks.The first task is flexible,which can be processed on either of the two machines,and the second task must be processed on the second machine after the first task is completed.We consider two objective functions:to minimize the makespan and tominimize the total weighted completion time.First,we show the problem for any one of the two objectives is ordinary NP-hard by polynomial-time Turing Reduction.Then,using the Continuous ProcessingModule(CPM),we design a dynamic programming algorithm for each case and calculate the time complexity of each algorithm.Finally,numerical experiments are used to analyze the effect of dynamic programming algorithms in practical operations.Comparative experiments show that these dynamic programming algorithms have comprehensive advantages over the branch and bound algorithm(a classical exact algorithm)and the discrete harmony search algorithm(a high-performance heuristic algorithm).
文摘Rail systems are gradually becoming the most desirable form of transit infrastructure around the world, partly because they are becoming more environmentally friendly compared with airplanes and automobiles. This paper examines the place of emerging countries in this move of implementing modern rail system that will eventually enhance the realization of a low-carbon society. Network model, transportation model and linear programming algorithms are used to model the present urban rail transport system in Nigeria, as an emerging country, in order to optimize it. Operational research methods, including simplex method and MODI, with the aids of computer software (excel solver and LIP solver) were adopted to solve the resulting models. The results showed that optimization of rail transport system will not only reduce carbon emission but also bring about economic development which is required for the eradication of prevalent poverty in these emerging countries.
文摘This paper studies the cost problem caused by the activity of the work-piece in the supply chain. The objective function is to find an optimal ordering that minimizes the total cost of production, transportation and subcontracting. This paper presents a dynamic programming algorithm for the corresponding sorting problem, and finally demonstrates the feasibility of the algorithm through an example.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)Postgraduate Innovation Fund Project of Education Department of Jiangxi Province(YC2021-S306)。
文摘The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金part of the Program of"Study on the mechanism of complex heat and mass transfer during batch transport process in products pipelines"funded under the National Natural Science Foundation of China(grant number 51474228)
文摘Oil product pipelines have features such as transporting multiple materials, ever-changing operating conditions, and synchronism between the oil input plan and the oil offloading plan. In this paper, an optimal model was established for a single-source multi-distribution oil pro- duct pipeline, and scheduling plans were made based on supply. In the model, time node constraints, oil offloading plan constraints, and migration of batch constraints were taken into consideration. The minimum deviation between the demanded oil volumes and the actual offloading volumes was chosen as the objective function, and a linear programming model was established on the basis of known time nodes' sequence. The ant colony optimization algo- rithm and simplex method were used to solve the model. The model was applied to a real pipeline and it performed well.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Due to various geological processes such as tectonic activities fractures might be created in rock mass body which causes creation of blocks with different shapes and sizes in the rock body. Exact understand- ing of these blocks geometry is an essential issue concerned in different domains of rock engineering such as support system of underground spaces built in jointed rock masses, design of blasting pattern, optimi- zation of fragmentation, determination of cube blocks in quarry mines, blocks stability, etc. The aim of this paper is to develop a computer program to determine geometry of rock mass blocks in two dimen- sional spaces. In this article, the eometrv of iointed rock mass is programmed in MATLABTM.
文摘The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1].
文摘Predictor-corrector algorithm for linear programming, proposed by Mizuno et al.([1]), becomes the best well known in the interior point methods. The purpose of this paper is to extend these results in two directions. First, we modify the algorithm in order to solve convex quadratic programming with upper bounds. Second, we replace the corrector step with an iteration of Monteiro and Adler's algorithm([2]). With these modifications, the duality gap is reduced by a constant factor after each corrector step for convex quadratic programming. It is shown that the new algorithm has a O(root nL)-iteration complexity.
文摘The problem of solving a linear programming is converted into that of solving an uncon-strained maximization problem in which the objective function is concave. Two algorithms areproposed. These two algorithms have very simple structure and can be implemented easily. Forany given precision, the algorithms will terminate in a finite number of steps.
文摘Since the point-to-set maps were introduced by Zangwill in the study of conceptual algorithms, various sufficient conditions for the algorithms to be of global convergence have been established.In this paper, the relations among all these conditions are illustrated by a unified approach;still more, unlike the sufficient conditions previously given in the literature,a new necessary condition is put forward at the end of the paper, so that it implies more applications.
文摘In recent years, energy-retrofitting is becoming an imperative aim for existing buildings worldwide and increased interest has focused on the development of nanoparticle blended concretes with adequate mechanical properties and durability performance, through the optimization of concrete permeability and the incorporation of the proper nanoparticle type in the concrete matrix. In order to investigate the potential use of nanocomposites as dense barriers against the permeation of liquids into the concrete, three types of nanoparticles including Zinc Oxide (ZnO), Magnesium Oxide (MgO), and composite nanoparticles were used in the present study as partial replacement of cement. Besides, the effect of adding these nanoparticles on both pore structure and mechanical strengths of the concrete at different ages was determined, and scanning electron microscopy (SEM) images were then used to illustrate the uniformity dispersion of nanoparticles in cement paste. It was demonstrated that the addition of a small number of nanoparticles effectively enhances the mechanical properties of concrete and consequently reduces the extent of the water permeation front. Finally, the behavioral models using Genetic Algorithm (GA) programming were developed to describe the time-dependent behavioral characteristics of nanoparticle blended concrete samples in various compressive and tensile stress states at different ages.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202601)the National Natural Science Foundation of China(Grant No.52309088)+1 种基金the China Postdoctoral Science Foundation(Grant No.2023M730932)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB608).
文摘Accurate estimation of the drag forces generated by vegetation stems is crucial for the comprehensive assessment of the impact of aquatic vegetation on hydrodynamic processes in aquatic environments.The coupling relationship between vegetation layer flow velocity and vegetation drag makes precise prediction of submerged vegetation drag forces particularly challenging.The present study utilized published data on submerged vegetation drag force measurements and employed a genetic programming(GP)algorithm,a machine learning technique,to establish the connection between submerged vegetation drag forces and flow and vegetation parameters.When using the bulk velocity,U,as the reference velocity scale to define the drag coefficient,C_(d),and stem Reynolds number,the GP runs revealed that the drag coefficient of submerged vegetation is related to submergence ratio(H^(*)),aspect ratio(d^(*)),blockage ratio(ψ^(*)),and vegetation density(λ).The relation between vegetation stem drag forces and flow velocity is implicitly embedded in the definition of C_(d).Comparisons with experimental drag force measurements indicate that using the bulk velocity as the reference velocity,as opposed to using the vegetation layer average velocity,U_(v),eliminates the need for complex iterative processes to estimate U_(v)and avoids introducing additional errors associated with U_(v)estimation.This approach significantly enhances the model’s predictive capabilities and results in a simpler and more user-friendly formula expression.