This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scalin...Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.展开更多
This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium poin...This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point; a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method.展开更多
We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks wi...We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.展开更多
This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response ...This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.展开更多
This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid fe...This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid feedback control is designed to attain modified function projective synchronization of networks. Numerical example is provided to show the effectiveness of our result.展开更多
This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control schem...This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.展开更多
The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate funct...The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.展开更多
In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic sy...In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.展开更多
We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function ma...We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.展开更多
A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented ...A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented (Corti and Fariello, Op. Res. Forum 2 (2021) 59). The method made use of projection matrices, and a corresponding Gram-Schmidt orthogonalization process, to identify the constrained extrema. Furthermore, information about the second-derivatives of the given function with constraints was generated, from which the nature of the constrained extrema could be determined, again without knowledge of the Lagrange multipliers. Here, the method is extended to the case of functional derivatives with constraints. In addition, constrained first-order and second-order derivatives of the function are generated, in which the derivatives with respect to a given variable are obtained and, concomitantly, the effect of the variations of the remaining chosen set of dependent variables are strictly accounted for. These constrained derivatives are valid not only at the extrema points, and also provide another equivalent route for the determination of the constrained extrema and their nature.展开更多
Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results d...Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.展开更多
This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cas...This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cascade synchronization scheme to address a generalized-type synchronization problem of three famous chaotic systems: the Lorenz system, Liu system and RSssler system, the states of two identical chaotic systems with unknown parameters can be asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.展开更多
By the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis, we introduce the matrix Szeg5 projection operator for the Hardy space of Hermitean monogenic functions defined on a bounded s...By the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis, we introduce the matrix Szeg5 projection operator for the Hardy space of Hermitean monogenic functions defined on a bounded sub-domain of even dimensional Euclidean space, establish the Kerzman-Stein formula which closely connects the matrix Szego projection operator with the Hardy projection operator onto the Hardy space, and get the matrix Szego projection operator in terms of the Hardy projection operator and its adjoint. Furthermore, we construct the explicit matrix Szego kernel function for the Hardy space on the sphere as an example, and get the solution to a boundary value problem for matrix functions.展开更多
Researches on cartography have made universal predictions on the hierarchies of functional projections in language.Based on this assumption,the structural maps established by Rizzi(1997,2001b)for the left-peripheral e...Researches on cartography have made universal predictions on the hierarchies of functional projections in language.Based on this assumption,the structural maps established by Rizzi(1997,2001b)for the left-peripheral elements suggest very strongly that Interrogative dominates Focus.Nevertheless,a straight-jacket adoption of this proposed hierarchical order to account for these left-peripheral projections inǸjò`-Kóo would be counterintuitive.Therefore,leaning on empirical and theoretical evidence,the paper calls to question the universality of the cartographers’claim,and argues that the opposite of the view is true ofǸjò`-Kóo.The paper adopts fieldwork method for data elicitation and descriptive approach as well as minimalist program for analysis of data.Data used in this study were elicited from purposively selected native speakers based on language proficiency.Data were acquired with syntactic checklist and structured interviews,and were subjected to interlinear and qualitative analysis.展开更多
In this paper, we prove an analogous to a result of Erdös and Rényi and of Kelly and Oxley. We also show that there are several properties of k-balanced matroids for which there exists a threshold function.
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski...In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.展开更多
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.11371049)the Science Foundation of Beijing Jiaotong University(Grant Nos.2011JBM130 and 2011YJS076)
文摘Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No.61075060)the Science and Technology Research Key Program for the Education Department of Hubei Province of China (Grant No.D20105001)the Open Project of State Key Laboratory of Industrial Control Technology,China (Grant No.ICT1007)
文摘This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point; a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Grant No.70871056)the Fundamental Research Funds for the Central Universities,China(Grant No.2013B10014)
文摘We investigate the problem of function projective synchronization (FPS) in drive–response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60875036)the Program for Innovative Research Team of Jiangnan University
文摘This paper gives the definition of function projective synchronization with less conservative demand for a scaling function, and investigates the function projective synchronization in partially linear drive-response chaotic systems. Based on the Lyapunov stability theory, it has been shown that the function projective synchronization with desired scaling function can be realized by simple control law. Moreover it does not need scaling function to be differentiable, bounded and non-vanished. The numerical simulations are provided to verify the theoretical result.
文摘This paper deals with the modified function projective synchronization problem for general complex networks with multiple proportional delays. With the existence of multiple proportional delays, an effective hybrid feedback control is designed to attain modified function projective synchronization of networks. Numerical example is provided to show the effectiveness of our result.
基金Sponsored by the Scientific Research Fund of Heilongjiang Provincial Education Department of China(Grant No. 11551088)Youth Foundation ofHarbin University of Science and Technology(Grant No. 2009YF018)
文摘This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.10735030 and 90718041Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Zhejiang Provincial Natural Science Foundations of China under Grant No.Y604056,Doctoral Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘The function projective synchronization of discrete-time chaotic systems is presented. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+3 种基金Natural Science Foundation of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030the Program for Changjiang Scholars and Innovative Research Team in Universities under Grant No.IRT0734K.C.Wong Magna Fund in Ningbo University
文摘In this paper, a function projective synchronization scheme is developed to investigate the function projective synchronization between the discrete-time driven chaotic system and the discrete-time response chaotic system. With the aid of symbolic-numeric computation, we use the scheme to study the function projective synchronization between 2D Lorenz discrete-time system and Hdnon discrete-time system, as well as that between 3D discrete-time hyperchaotic system and Henon-like map via three scalar controllers, respectively. Moreover numerical simulations are used to verify the effectiveness of the proposed scheme.
文摘We realize the function projective synchronization (FPS) between two discrete-time hyperchaotic systems, that is, the drive state vectors and the response state vectors can evolve in a proportional scaling function matrix. In this paper, a systematic scheme is explored to investigate the function projective synchronization of two identical discrete-time hyperchaotic systems using the backstepping method. Additionally, FPS of two different hyperchaotic systems is also realized. Numeric simulations are given to verify the effectiveness of our scheme.
文摘A method for determining the extrema of a real-valued and differentiable function for which its dependent variables are subject to constraints and that avoided the use of Lagrange multipliers was previously presented (Corti and Fariello, Op. Res. Forum 2 (2021) 59). The method made use of projection matrices, and a corresponding Gram-Schmidt orthogonalization process, to identify the constrained extrema. Furthermore, information about the second-derivatives of the given function with constraints was generated, from which the nature of the constrained extrema could be determined, again without knowledge of the Lagrange multipliers. Here, the method is extended to the case of functional derivatives with constraints. In addition, constrained first-order and second-order derivatives of the function are generated, in which the derivatives with respect to a given variable are obtained and, concomitantly, the effect of the variations of the remaining chosen set of dependent variables are strictly accounted for. These constrained derivatives are valid not only at the extrema points, and also provide another equivalent route for the determination of the constrained extrema and their nature.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB921704)the National Natural Science Foundation of China(Grant No.11374362)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.15XNLQ03)
文摘Recently, we developed the projective truncation approximation for the equation of motion of two-time Green's functions(Fan et al., Phys. Rev. B 97, 165140(2018)). In that approximation, the precision of results depends on the selection of operator basis. Here, for three successively larger operator bases, we calculate the local static averages and the impurity density of states of the single-band Anderson impurity model. The results converge systematically towards those of numerical renormalization group as the basis size is enlarged. We also propose a quantitative gauge of the truncation error within this method and demonstrate its usefulness using the Hubbard-I basis. We thus confirm that the projective truncation approximation is a method of controllable precision for quantum many-body systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10735030)Zhejiang Provincial Natural Science Foundations of China (Grant No Y604056)+1 种基金Doctoral Foundation of Ningbo City, China (Grant No 2005A61030)Shanghai Leading Academic Discipline Project, China (Grant No B412)
文摘This paper investigates the function cascade synchronization of chaos system. Combining cascade synchronization scheme, parametric adaptive control and projective synchronization scheme, it proposes a new function cascade synchronization scheme to address a generalized-type synchronization problem of three famous chaotic systems: the Lorenz system, Liu system and RSssler system, the states of two identical chaotic systems with unknown parameters can be asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are used to verify the effectiveness of the proposed synchronization techniques.
基金supported by Portuguese funds through the CIDMA Center for Research and Development in Mathematics and Applicationsthe Portuguese Foundation for Science and Technology(FCT–Fundao para a Ciência e a Tecnologia)within project UID/MAT/04106/2013the recipient of a Postdoctoral Foundation from FCT under Grant No. SFRH/BPD/74581/2010
文摘By the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis, we introduce the matrix Szeg5 projection operator for the Hardy space of Hermitean monogenic functions defined on a bounded sub-domain of even dimensional Euclidean space, establish the Kerzman-Stein formula which closely connects the matrix Szego projection operator with the Hardy projection operator onto the Hardy space, and get the matrix Szego projection operator in terms of the Hardy projection operator and its adjoint. Furthermore, we construct the explicit matrix Szego kernel function for the Hardy space on the sphere as an example, and get the solution to a boundary value problem for matrix functions.
文摘Researches on cartography have made universal predictions on the hierarchies of functional projections in language.Based on this assumption,the structural maps established by Rizzi(1997,2001b)for the left-peripheral elements suggest very strongly that Interrogative dominates Focus.Nevertheless,a straight-jacket adoption of this proposed hierarchical order to account for these left-peripheral projections inǸjò`-Kóo would be counterintuitive.Therefore,leaning on empirical and theoretical evidence,the paper calls to question the universality of the cartographers’claim,and argues that the opposite of the view is true ofǸjò`-Kóo.The paper adopts fieldwork method for data elicitation and descriptive approach as well as minimalist program for analysis of data.Data used in this study were elicited from purposively selected native speakers based on language proficiency.Data were acquired with syntactic checklist and structured interviews,and were subjected to interlinear and qualitative analysis.
文摘In this paper, we prove an analogous to a result of Erdös and Rényi and of Kelly and Oxley. We also show that there are several properties of k-balanced matroids for which there exists a threshold function.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
基金supported by the National Natural Science Foundation of China (Grant No. 60374015)
文摘In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.