针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4...针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.展开更多
文摘针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.
文摘稀疏阵列布阵灵活,增大阵列孔径的同时还能减少阵元间耦合,但基于稀疏阵列的传统波达方向估计会导致角度模糊混叠,带来估计精度差和稳健性不足的问题。针对以上问题,提出一种适用于稀疏阵列波达方向估计的加权截断奇异值投影(weighted truncated singular value projection,WT-SVP)的鲁棒矩阵填充算法。在填充迭代过程中根据奇异值的大小分配权重,突出大奇异值包含的阵列信息,减少小奇异值中不必要的噪声信息,从而优化传统奇异值投影算法。该算法可以实现稀疏阵列的孔洞信息恢复,对不连续阵元充分利用,同时WT-SVP填充算法实现了稀疏阵列波达方向估计的高精度、高分辨以及在低信噪比、低快拍时的高鲁棒性。