In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed fo...In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed for DPM, which is called the fast DPM(FDPM), and the convergence ratio of the above algorithm is greatly increased. The examples show that the iterative number of the FDPM with optimal parameters decreases much more, which is less than one third of the DPM iteration number. After studying the ...展开更多
Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separ...Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separation solution, some special localized coherent soliton excitations with or without elastic behaviors such as dromions, peakons,and foldons etc. are revealed by selecting appropriate functions in this paper.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
An efficient method for quality control of Fructus Aurantii Immaturus (FAI),a famous traditional Chinese medicine (TCM) was established. A simple and reliable high-performance liquid chromatography-photodiode array de...An efficient method for quality control of Fructus Aurantii Immaturus (FAI),a famous traditional Chinese medicine (TCM) was established. A simple and reliable high-performance liquid chromatography-photodiode array detector (HPLC-DAD) procedure coupled with chemometric methods was developed for fingerprint analysis,qualitative analysis and quantitative determination of this herb. In qualitative and quantitative analyses,heuristic evolving latent projection (HELP) method was employed to resolve the overlapping peaks of the tested samples. Two bioactive components,namely hesperidin and naringin,are confirmed and determined,together with four flavonoids compounds tentatively identified including two new ones. From fingerprint analysis,the fingerprint data were processed with correlation coefficients for quantitative expression of their similarity and dissimilarity. The developed method based on an integration of chromatographic fingerprint and quantitative analysis is scientific,and the obtained results can be applied to the quality control of herb medicine.展开更多
For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the ...For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.展开更多
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements f...A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.展开更多
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e...In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.展开更多
We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were der...The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We the...In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
The purpose of the paper is to demonstrate the effectiveness of using project method in teaching professional English in non-linguistic colleges. The main principles of project teaching, the technology of its adoption...The purpose of the paper is to demonstrate the effectiveness of using project method in teaching professional English in non-linguistic colleges. The main principles of project teaching, the technology of its adoption in teaching process, and some kinds of projects used in studying are reviewed. During the research the following methods were used: theoretical analysis, empirical, and statistical. While studying the course "Professional foreign language", the monitoring of effectiveness of project method use in teaching a foreign language was made. Monitoring was conducted under the following criteria: percent of progress, percent of quality of knowledge, and the level of motivation in studying English. The experience showed that in the process of project work learners' general educational abilities, special abilities, and communication abilities are developed.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov an...In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.展开更多
文摘In order to solve the electromagnetic problems on the large multi branch domains, the decomposition projective method(DPM) is generalized for multi subspaces in this paper. Furthermore multi parameters are designed for DPM, which is called the fast DPM(FDPM), and the convergence ratio of the above algorithm is greatly increased. The examples show that the iterative number of the FDPM with optimal parameters decreases much more, which is less than one third of the DPM iteration number. After studying the ...
文摘Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separation solution, some special localized coherent soliton excitations with or without elastic behaviors such as dromions, peakons,and foldons etc. are revealed by selecting appropriate functions in this paper.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
基金Project(20875104) supported by the National Natural Science Foundation of ChinaProject(10SDF22) supported by the Special Foundation of China Postdoctoral ScienceProject(201021200011) supported by the Advanced Research Plan of Central South University, China
文摘An efficient method for quality control of Fructus Aurantii Immaturus (FAI),a famous traditional Chinese medicine (TCM) was established. A simple and reliable high-performance liquid chromatography-photodiode array detector (HPLC-DAD) procedure coupled with chemometric methods was developed for fingerprint analysis,qualitative analysis and quantitative determination of this herb. In qualitative and quantitative analyses,heuristic evolving latent projection (HELP) method was employed to resolve the overlapping peaks of the tested samples. Two bioactive components,namely hesperidin and naringin,are confirmed and determined,together with four flavonoids compounds tentatively identified including two new ones. From fingerprint analysis,the fingerprint data were processed with correlation coefficients for quantitative expression of their similarity and dissimilarity. The developed method based on an integration of chromatographic fingerprint and quantitative analysis is scientific,and the obtained results can be applied to the quality control of herb medicine.
基金supported by the National Natural Science Foundation of China(7107307971222106+2 种基金70901069)the Research Foundation of the National Excellent Doctoral Dissertation of Chinathe Research Fund for the Doctoral Program of Higher Education(20133402110028)
文摘For the gray attributes of the equipment program and its difficulty to carry out the quantitative assessment of the equipment program information, the gray relation projection method is simply reviewed. Combining the super-data envelopment analysis(DEA) model and the gray system theory, a new super-DEA for measuring the weight is proposed, and a gray relation projection model is established to rank the equipment programs. Finally, this approach is used to evaluate the equipment program. The results are verified valid and can provide a new way for evaluating the equipment program.
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘A unified analysis is presented for the stabilized methods including the pres- sure projection method and the pressure gradient local projection method of conforming and nonconforming low-order mixed finite elements for the stationary Navier-Stokes equa- tions. The existence and uniqueness of the solution and the optimal error estimates are proved.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51075083)
文摘In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.
基金Supported by the National Natural Science Foundation of China (No. 202001036)
文摘We applied the projection and contraction method to nonlinear complementarity problem (NCP). Moveover, we proposed an inexact implicit method for (NCP) and proved the convergence.
文摘The newly proposed element energy projection(EEP) method has been applied to the computation of super_convergent nodal stresses of Timoshenko beam elements.General formulas based on element projection theorem were derived and illustrative numerical examples using two typical elements were given.Both the analysis and examples show that EEP method also works very well for the problems with vector function solutions.The EEP method gives super_convergent nodal stresses,which are well comparable to the nodal displacements in terms of both convergence rate and error magnitude.And in addition,it can overcome the “shear locking” difficulty for stresses even when the displacements are badly affected.This research paves the way for application of the EEP method to general one_dimensional systems of ordinary differential equations.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
基金The project supported by the China NKBRSF(2001CB409604)
文摘In this paper, a fully third-order accurate projection method for solving the incompressible Navier-Stokes equations is proposed. To construct the scheme, a continuous projection procedure is firstly presented. We then derive a sufficient condition for the continuous projection equations to be temporally third-order accurate approximations of the original Navier-Stokes equations by means of the localtruncation-error-analysis technique. The continuous projection equations are discretized temporally and spatially to third-order accuracy on the staggered grids, resulting in a fully third-order discrete projection scheme. The possibility to design higher-order projection methods is thus demonstrated in the present paper. A heuristic stability analysis is performed on this projection method showing the probability of its being stable. The stability of the present scheme is further verified through numerical tests. The third-order accuracy of the present projection method is validated by several numerical test cases.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
文摘The purpose of the paper is to demonstrate the effectiveness of using project method in teaching professional English in non-linguistic colleges. The main principles of project teaching, the technology of its adoption in teaching process, and some kinds of projects used in studying are reviewed. During the research the following methods were used: theoretical analysis, empirical, and statistical. While studying the course "Professional foreign language", the monitoring of effectiveness of project method use in teaching a foreign language was made. Monitoring was conducted under the following criteria: percent of progress, percent of quality of knowledge, and the level of motivation in studying English. The experience showed that in the process of project work learners' general educational abilities, special abilities, and communication abilities are developed.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
文摘In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection method is proposed for solving large scale nonlinear convex constrained monotone equations based on the projection method of Solodov and Svaiter. The obtained method has low-complexity property and converges globally. Furthermore, this method has also been extended to solve the sparse signal reconstruction in compressive sensing. Numerical experiments illustrate the efficiency of the given method and show that such non-monotone method is suitable for some large scale problems.