The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering t...The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering the tar-geted celis and expression of antisense transcripts to c-myc, C-MYC protein level, cell proliferation and colony-forming potentiality were all definitely inhibited.展开更多
Ojective: To investigate the effect of hammerhead ribozyme that specifically cleaves c-myc mRNA on the proliferation of vascular smooth muscle cells (VSMCs ). Methods: Based on the computer analysis of the secondary s...Ojective: To investigate the effect of hammerhead ribozyme that specifically cleaves c-myc mRNA on the proliferation of vascular smooth muscle cells (VSMCs ). Methods: Based on the computer analysis of the secondary structure of c-myc mRNA, nt 2029 in rat c-myc oncogene was selected as a cleaving site for hammerhead ribozyme and the ribozyme was designed. With automatic DNA synthesizer, the two complementary DNA strands of the ribozyme were synthesized. The ribozyme gene was cloned into pGEM3Zf ( + ) vector and subcloned into eukaryotic expression pcD-NA3 vector. The recombinant pcDNA-Rz was transfected into the cultured rat VSMCs by lipofectAMINE mediated DNA transfection protocol and individual cell clones were selected by G418. Results: The sequence of ribozyme gene inserted in pGEMSZf ( + ) vector was proved to be perfectly correct. In VSMCs transfected with recombinant pcDNA-Rz, flow cytometry analysis showed that the S phase and G2/M fractions were decreased significantly and cell proliferation stagnated in the G0/G1 phase. Conclusion: The results suggest that hammerhead ribozyme that specifically cleaves c-myc mRNA can significantly inhibit the proliferation of VSMCs.展开更多
Studies have demonstrated that regulation of GDNF on male germline stem cells (mGSCs) mainly through Ras/Erk1/2, Src family kinase and PI3K/Akt signaling pathways, but the signaling pathways GDNF-mediated are differ...Studies have demonstrated that regulation of GDNF on male germline stem cells (mGSCs) mainly through Ras/Erk1/2, Src family kinase and PI3K/Akt signaling pathways, but the signaling pathways GDNF-mediated are different when the species and cell lines varied. Whether GDNF regulates self-renewal of mGSCs isolated from livestock has not been reported. Here, we purified mGSCs from dairy goat testis using mixed enzymes and fibronectin. Immunofluoresce staining revealed the cultured dairy mGSCs expressed Vasa, Nanos2, Ngn3, Tert, Dazl, Lin28, Oct4, CD49f, Stra8 and GFRa1, reflecting that these cells were mGSCs phenotype. Then we cultured these dairy goat mGSCs in different concentrations of GDNF (0, 5, 10, or 20 ng mL-1) to optimize the best concentration of GDNF to sustain the dairy goat mGSCs self-renewal, after that the inhibitor of PI3K (LY294002, 10 μmol L-1) was added to the medium which contains the optimal concentration of GDNF we obtained by experiments. The mGSCs cultured in different media were compared through the population doubling time (PDT), capacity of cell proliferation evaluated by PCNA and BrdU immunofluorescence staining, RT-PCR, QRT-PCR, Western blotting and flow cytometry. Results showed that 10 ng mL-1 was the optimal concentration of GDNF to maintain goat mGSCs self-renewal and GDNF up-regulates c-Myc transcription via the PI3K/Akt pathway to promote goat mGSCs proliferation. This study provides us an efficient model to study the mechanism in mGSCs proliferation and differentiation in goat, and has important implications in unveiling signaling pathways in livestock GSCs.展开更多
The effects of two antisense oligodeoxynucleotides on the expression of c-Ha-ras proto-oncogene and the growth of human gastric carcinoma cell lines were observed. Synthetic 15-mer directed at the region of the transl...The effects of two antisense oligodeoxynucleotides on the expression of c-Ha-ras proto-oncogene and the growth of human gastric carcinoma cell lines were observed. Synthetic 15-mer directed at the region of the translational initiation site of c-Ha-ras proto-oncogene (ASO-r) greatly inhibited the proliferation (55. 61%,P<0. 05) and DNA synthesis (76. 79%,P<0. 05) of MGc-803 cell line. It also inhibited the proliferation (62. 02%,P<0. 05) and DNA synthesis (76. 78%, P<0. 05) of SGc-7901 cell line. A reduction in intracellular P21 ras protein levels in MGc-803 cell line was observed 6 h after the treatment with ASO-r and maintained over 12 h. Another synthetic 15-mer targeted against the initiation codon and downstream 4 codons of c-myc proto-oncogene (ASOm) inhibited only DNA synthesis of MGc-803 cell line (71. 37%, P<0. 05). The control 15-mer did not inhibit the expression of P21 protein and proliferation of these cell lines. These experiments seemed to provide evidence that ASO-r could be effective in inhibiting the expression of c-Ha-ras proto-oncogene and controlling the growth of human gastric carcinoma cells,and that the over-expression of c-Ha-ras proto-oncogene might mainly be associated with the malignant proliferation of human gastric carcinoma cells.展开更多
Objectives To investigate theproliferation of smooth muscle cells (VSMCs) and theexpression of c-myc gene in rabbit carotid arieries af-ter stenting. Methods Platinium-Iridium stent wereimplanted into the right caroti...Objectives To investigate theproliferation of smooth muscle cells (VSMCs) and theexpression of c-myc gene in rabbit carotid arieries af-ter stenting. Methods Platinium-Iridium stent wereimplanted into the right carotid arteries of 16 rabbitsunder vision. 7,14,30 and 90 days after the stentingprocedure, morphological changes of VSMCs were ob-served under light and transmission electron micro-scope. The c-myc gene expression was detected by insitu hybridization (ISH) and immunohistochemicalstaining. Results 7 days afer stenting, the pheno-type of VSMCs changed from contractile to syntheticphenotype; there were a number of proliferative VSM-Cs in the neointima. At 14 and 30 days, there weresynthetic and transitive VSMCs. At 90 days, the phe-notype of VSMCs recovered to contractile phenotype.The ultrastructure of typical synthetic phenotype ofVSMCs were round, containing a large amount ofrough endoplasmic reticulum and mitochondria. C-myc expression were positive both by ISH and im-munohistochemical staining. Conclusions C - mycgene expression increases and closely relates to VSM-Cs proliferation afer stenting. It may play an impor-tant role in the in-stent restenosis.展开更多
Objectives To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC. Methods Taking the VSMC obtained from rat aor...Objectives To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC. Methods Taking the VSMC obtained from rat aorta tho- racalis cultured 4 - 8 generation as research object. The objects were divided into three groups to carry out control study: control group, PCNA ASODN group and c-myc ASODN group. The ASODNs' working concentration all were 1 : 50. The depressive effect of ASODN on VSMC proliferation was investigated by cell counting, MTT and ^3H-TdR incorporation assay; PCNA and c-myc expression were detected by immunohistochemical method after transferring PCNA and c-myc ASODN into VSMC. Results ① PCNA and c-myc ASODN could inhibit the proliferation of VSMC significantly, compared with control group ( P 〈 0. 05). ②Transferring PCNA and c-myc ASODN into VSMC obtained successfully ; the corresponding gene was inhibited obviously ; compared with control group ( P 〈 0. 05 ). Conclusions PCNA and c-myc might play a considerable role in the VSMC proliferation process. The corresponding gene could be depressed successfully after transferring PCNA and c-myc ASODN into VSMC, and then the proliferation of VSMC was slowed down. This study presented a beneficial proposal and theoretical fundament for atherosclerotic treatment.展开更多
Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our...Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.展开更多
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ...Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.展开更多
The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exert...The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear.Here,our clinical study showed that along with prostatic epithelial cell(PEC)proliferation,sex steroid hormones were dysregulated in the serum and prostate of BPH patients.As the major contributor to dysregulated sex steroid hormones,elevated dihydrotestosterone(DHT)had a significant positive relationship with the clinical characteristics of BPH patients.Activation of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor(AR)-mediated Yes-associated protein(YAP1)-TEA domain transcription factor(TEAD4)heterodimers.Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells.Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.展开更多
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus...Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.展开更多
Background The proliferation of porcine ovarian granulosa cells(GCs)is essential to follicular development and the ubiquitin–proteasome system is necessary for maintaining cell cycle homeostasis.Previous studies foun...Background The proliferation of porcine ovarian granulosa cells(GCs)is essential to follicular development and the ubiquitin–proteasome system is necessary for maintaining cell cycle homeostasis.Previous studies found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1(UCHL1)regulates female reproduction,especially in ovarian development.However,the mechanism by which UCHL1 regulates porcine GC proliferation remains unclear.Results UCHL1 overexpression promoted GC proliferation,and knockdown had the opposite effect.UCHL1 is directly bound to cyclin B1(CCNB1),prolonging the half-life of CCNB1 and inhibiting its degradation,thereby promoting GC proliferation.What's more,a flavonoid compound-isovitexin improved the enzyme activity of UCHL1 and promoted the proliferation of porcine GCs.Conclusions UCHL1 promoted the proliferation of porcine GCs by stabilizing CCNB1,and isovitexin enhanced the enzyme activity of UCHL1.These findings reveal the role of UCHL1 and the potential of isovitexin in regulating proliferation and provide insights into identifying molecular markers and nutrients that affect follicle development.展开更多
Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap...Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.展开更多
BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogen...BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogenesis of pancreatic cancer is well recognized,recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts.However,their precise role in pancreatic cancer remains unknown.Resveratrol is a natural polyphenol known for its multifaceted biological actions,including antioxidative and neuroprotective properties,as well as its potential to inhibit tumor proliferation and migration.Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression ofα-SMA and p16.HP-1 expression was determined using immunohistochemistry.Cells were treated with the senescence-inducing factors known as 3CKs.Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate.Western blotting was conducted to assess the expression levels of p16 and p21.Immunofluorescence was performed to assess LaminB1 expression.Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors,including IL-4,IL-6,IL-8,IL-13,MMP-2,MMP-9,CXCL1,and CXCL12.A scratch assay was used to assess the migratory capacity of the cells,whereas Transwell assays were used to evaluate their invasive potential.RESULTS Specifically,we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues,linking their abundance to cancer progression.Intriguingly,Resveratrol effectively eradicated these fibroblasts and hindered their senescence,which consequently impeded pancreatic cancer progression.CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.展开更多
Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h...Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.展开更多
AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjuncti...AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjunctival tissues were collected from the superior area of the same patient’s eye(n=33).The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reversetranscription polymerase chain reaction(RT-qPCR)were analyzed.Three distinct siRNA sequences targeting hsa_circ_0007482,along with a negative control sequence,were transfected into HPFs.Cell proliferation was assessed using the cell counting kit-8.Expression levels of Ki67,proliferating cell nuclear antigen(PCNA),Cyclin D1,Bax,B-cell lymphoma-2(Bcl-2),and Caspase-3 were measured via RT-qPCR.Immunofluorescence staining was employed to detect Ki67 and vimentin expressions.Apoptosis was evaluated using flow cytometry.RESULTS:Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues(P<0.001).Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity,thickness,and vascular density.Knockdown of hsa_circ_0007482 inhibited cell proliferation,reducing the mRNA expression of Ki67,PCNA,and Cyclin D1 in HPFs.Hsa_circ_0007482 knockdown induced apoptosis,increasing mRNA expression levels of Bax and Caspase-3,while decreasing Bcl-2 expression in HPFs.Additionally,hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs.CONCLUSION:The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs.There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.展开更多
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra...Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.展开更多
BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determ...BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.展开更多
As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear...As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear.According to transcriptome data,we identified PbGIF1was highly expressed during fruit development in cytokinins induced parthenocarpy pear.In the present study,the biofunction of PbGIF1 was initially verified.Overexpression of PbGIF1 promoted fruit size of transgenic tomato.The size of flesh fruit was not affected by cell expansion but the cell proliferation was promoted by overexpressing Pb GIF1.The accelerated cell proliferation process was also observed in PbGIF1-overexpressed transgenic pear fruit calli.The transcriptional regulation of cytokinins on PbGIF1 was further confirmed by exogenous CPPU treatments in pear fruitlets.To investigate the underlying mechanism,the cytokinins-responded factor,PbRR1,was further focused on.The results of Yeast-one-hybrid assay suggested that PbRR1 can bind to the promoter sequence of PbGIF1.The transcriptional activation of PbRR1 on PbGIF1 was also confirmed by Dual-Luciferase assays.Taken together,the results showed that cytokinins control pear fruit development via the transcriptional activation of PbGIF1 by PbRR1.展开更多
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.Howev...Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.However,the expression,clinical significance,and effects on cell propagation,invasion,and dissemination of circRNA_001896 in cervical cancer(CC)tissues remain unclear.Methods:The Gene Expression Omnibus(GEO)datasets(GSE113696 and GSE102686)were used to examine differential circRNA expression in CC and adjacent tissues.The expression of circRNA_001896 was detected in 72 CC patients usingfluorescence quantitative PCR.Correlation analysis with clinical pathological features was performed through COX multivariate and univariate analysis.The effect of circRNA_001896 downregulation on CC cell propagation was examined using the cell counting kit-8(CCK-8)test,clonogenic,3D sphere formation,and in vivo tumorigenesis assays.Results:Intersection of the GSE113696 and GSE102686 datasets revealed an increased expression of four circRNAs,including circRNA_001896,in CC tissues.Fluorescence quantitative PCR confirmed circRNA_001896 as a circular RNA.High expression of circRNA_001896 was considerably associated with lymph node metastasis,International Federation of Gynecologists and Obstetricians(FIGO)stage,tumor diameter,and survival period in CC patients.Proportional hazards model(COX)univariate and multivariate analyses revealed that circRNA_001896 expressions are a distinct risk factor affecting CC patients’prognosis.Cellular functional experiments showed that downregulating circRNA_001896 substantially suppressed CC cell growth,colony formation,and 3D sphere-forming ability.In vivo,tumorigenesis analysis in nude mice demonstrated that downregulating circRNA_001896 remarkably reduced the in vivo proliferation capacity of CC cells.Conclusion:CircRNA_001896 is highly expressed in CC tissues and is substantially related to lymph node metastasis,FIGO stage,tumor size,and survival period in patients.Moreover,downregulating circRNA_001896 significantly inhibits both in vivo and in vitro propagation of CC cells.Therefore,circRNA_001896 might be used as a biomarker for targeted therapy in cervical cancer.展开更多
文摘The human promyelocytic cell line HL-60 overexpresses the c-myc protooncogene. Plasmid pDACx carrying antisense human c-myc DNA and neo gene was introduced into HL-60 cells with lipofectin reagent. Upon DNA entering the tar-geted celis and expression of antisense transcripts to c-myc, C-MYC protein level, cell proliferation and colony-forming potentiality were all definitely inhibited.
基金Supported by the National Natural Science Foundation of China(No.39600064)
文摘Ojective: To investigate the effect of hammerhead ribozyme that specifically cleaves c-myc mRNA on the proliferation of vascular smooth muscle cells (VSMCs ). Methods: Based on the computer analysis of the secondary structure of c-myc mRNA, nt 2029 in rat c-myc oncogene was selected as a cleaving site for hammerhead ribozyme and the ribozyme was designed. With automatic DNA synthesizer, the two complementary DNA strands of the ribozyme were synthesized. The ribozyme gene was cloned into pGEM3Zf ( + ) vector and subcloned into eukaryotic expression pcD-NA3 vector. The recombinant pcDNA-Rz was transfected into the cultured rat VSMCs by lipofectAMINE mediated DNA transfection protocol and individual cell clones were selected by G418. Results: The sequence of ribozyme gene inserted in pGEMSZf ( + ) vector was proved to be perfectly correct. In VSMCs transfected with recombinant pcDNA-Rz, flow cytometry analysis showed that the S phase and G2/M fractions were decreased significantly and cell proliferation stagnated in the G0/G1 phase. Conclusion: The results suggest that hammerhead ribozyme that specifically cleaves c-myc mRNA can significantly inhibit the proliferation of VSMCs.
基金supported by the National Natural Science Foundation of China(30972097,31272518)the Program for the New Century Excellent Talents of State Ministry of Education of P.R.China(NCET-09-0654)+2 种基金the Doctoral Fund of Ministry of Education of P.R.China(RFDP,20120204110030)the Scientific Research Program of Shaanxi Province,China(2011K02-06)the Fundamental Research Funds for the Central Universities,China(QN2011012)
文摘Studies have demonstrated that regulation of GDNF on male germline stem cells (mGSCs) mainly through Ras/Erk1/2, Src family kinase and PI3K/Akt signaling pathways, but the signaling pathways GDNF-mediated are different when the species and cell lines varied. Whether GDNF regulates self-renewal of mGSCs isolated from livestock has not been reported. Here, we purified mGSCs from dairy goat testis using mixed enzymes and fibronectin. Immunofluoresce staining revealed the cultured dairy mGSCs expressed Vasa, Nanos2, Ngn3, Tert, Dazl, Lin28, Oct4, CD49f, Stra8 and GFRa1, reflecting that these cells were mGSCs phenotype. Then we cultured these dairy goat mGSCs in different concentrations of GDNF (0, 5, 10, or 20 ng mL-1) to optimize the best concentration of GDNF to sustain the dairy goat mGSCs self-renewal, after that the inhibitor of PI3K (LY294002, 10 μmol L-1) was added to the medium which contains the optimal concentration of GDNF we obtained by experiments. The mGSCs cultured in different media were compared through the population doubling time (PDT), capacity of cell proliferation evaluated by PCNA and BrdU immunofluorescence staining, RT-PCR, QRT-PCR, Western blotting and flow cytometry. Results showed that 10 ng mL-1 was the optimal concentration of GDNF to maintain goat mGSCs self-renewal and GDNF up-regulates c-Myc transcription via the PI3K/Akt pathway to promote goat mGSCs proliferation. This study provides us an efficient model to study the mechanism in mGSCs proliferation and differentiation in goat, and has important implications in unveiling signaling pathways in livestock GSCs.
文摘The effects of two antisense oligodeoxynucleotides on the expression of c-Ha-ras proto-oncogene and the growth of human gastric carcinoma cell lines were observed. Synthetic 15-mer directed at the region of the translational initiation site of c-Ha-ras proto-oncogene (ASO-r) greatly inhibited the proliferation (55. 61%,P<0. 05) and DNA synthesis (76. 79%,P<0. 05) of MGc-803 cell line. It also inhibited the proliferation (62. 02%,P<0. 05) and DNA synthesis (76. 78%, P<0. 05) of SGc-7901 cell line. A reduction in intracellular P21 ras protein levels in MGc-803 cell line was observed 6 h after the treatment with ASO-r and maintained over 12 h. Another synthetic 15-mer targeted against the initiation codon and downstream 4 codons of c-myc proto-oncogene (ASOm) inhibited only DNA synthesis of MGc-803 cell line (71. 37%, P<0. 05). The control 15-mer did not inhibit the expression of P21 protein and proliferation of these cell lines. These experiments seemed to provide evidence that ASO-r could be effective in inhibiting the expression of c-Ha-ras proto-oncogene and controlling the growth of human gastric carcinoma cells,and that the over-expression of c-Ha-ras proto-oncogene might mainly be associated with the malignant proliferation of human gastric carcinoma cells.
文摘Objectives To investigate theproliferation of smooth muscle cells (VSMCs) and theexpression of c-myc gene in rabbit carotid arieries af-ter stenting. Methods Platinium-Iridium stent wereimplanted into the right carotid arteries of 16 rabbitsunder vision. 7,14,30 and 90 days after the stentingprocedure, morphological changes of VSMCs were ob-served under light and transmission electron micro-scope. The c-myc gene expression was detected by insitu hybridization (ISH) and immunohistochemicalstaining. Results 7 days afer stenting, the pheno-type of VSMCs changed from contractile to syntheticphenotype; there were a number of proliferative VSM-Cs in the neointima. At 14 and 30 days, there weresynthetic and transitive VSMCs. At 90 days, the phe-notype of VSMCs recovered to contractile phenotype.The ultrastructure of typical synthetic phenotype ofVSMCs were round, containing a large amount ofrough endoplasmic reticulum and mitochondria. C-myc expression were positive both by ISH and im-munohistochemical staining. Conclusions C - mycgene expression increases and closely relates to VSM-Cs proliferation afer stenting. It may play an impor-tant role in the in-stent restenosis.
文摘Objectives To study the depressive effect of the antisense oligonuceotides (ASODN) of c-myc and proliferating cell nuclear antigen (PCNA) on the proliferation of VSMC. Methods Taking the VSMC obtained from rat aorta tho- racalis cultured 4 - 8 generation as research object. The objects were divided into three groups to carry out control study: control group, PCNA ASODN group and c-myc ASODN group. The ASODNs' working concentration all were 1 : 50. The depressive effect of ASODN on VSMC proliferation was investigated by cell counting, MTT and ^3H-TdR incorporation assay; PCNA and c-myc expression were detected by immunohistochemical method after transferring PCNA and c-myc ASODN into VSMC. Results ① PCNA and c-myc ASODN could inhibit the proliferation of VSMC significantly, compared with control group ( P 〈 0. 05). ②Transferring PCNA and c-myc ASODN into VSMC obtained successfully ; the corresponding gene was inhibited obviously ; compared with control group ( P 〈 0. 05 ). Conclusions PCNA and c-myc might play a considerable role in the VSMC proliferation process. The corresponding gene could be depressed successfully after transferring PCNA and c-myc ASODN into VSMC, and then the proliferation of VSMC was slowed down. This study presented a beneficial proposal and theoretical fundament for atherosclerotic treatment.
基金National Nature Science Foundation of China(Nos.81960118,81860115,81760116 and 82060116)Guizhou Science and Technology Project:Qiankehe Foundation(No.(2020)1Y300)+8 种基金Natural Science Foundation of Sichuan(No.2022NSFSC0837)Science and Technology Project of Chengdu(No.2022-YF05-01811-SN)Science and Technology Project of Guizhou Province(No.YQK(2023)032)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-27)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-26)Guizhou Science and Technology Department(No.(2019)1259)Guizhou Science and Technology Department Guizhou Science and Technology Platform Talents(No.(2017)5718)Science and Technology Fund of Guizhou Provincial Health Commission(No.gzwki2021-382)The Affiliated Hospital of Guizhou Medical University Excellent Reserve Talent in 2023(No.gyfyxkrc-2023-06).
文摘Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.
基金supported by the National Natural Science Foundation of China,Nos.81672261(to XH),81972151(to HZ),82372568(to JL)the Natural Science Foundation of Guangdong Province,Nos.2019A1515011106(to HZ),2023A1515030080(to JL)。
文摘Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81973377,81903689,82073906 and 82273987)the Key Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant Nos.:19KJB350006 and 19KJA460008)+1 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the initializing Fund of Xuzhou Medical University(Grant No.:D2018011)Postgraduate Research Practice Innovation Program of Jiangsu Province(Grant Nos.:KYCX21-2733 and KYCX22-2966).
文摘The occurrence of benign prostate hyperplasia(BPH)was related to disrupted sex steroid hormones,and metformin(Met)had a clinical response to sex steroid hormone-related gynaecological disease.However,whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear.Here,our clinical study showed that along with prostatic epithelial cell(PEC)proliferation,sex steroid hormones were dysregulated in the serum and prostate of BPH patients.As the major contributor to dysregulated sex steroid hormones,elevated dihydrotestosterone(DHT)had a significant positive relationship with the clinical characteristics of BPH patients.Activation of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK)by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor(AR)-mediated Yes-associated protein(YAP1)-TEA domain transcription factor(TEAD4)heterodimers.Met’s anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells.Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.
基金supported by the National Natural Science Foundation of China,Nos.82171172(to RZ)and 81771366(to RZ)Fundamental Research Funds for the Central Universities of Central South University,Nos.2021zzts1095(to SZ)and 2022zzts0832(to HY)。
文摘Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction.
基金funded by National Key R&D Program of China(NO.2022YFD1300303)National Natural Science Foundation of China(32272849)。
文摘Background The proliferation of porcine ovarian granulosa cells(GCs)is essential to follicular development and the ubiquitin–proteasome system is necessary for maintaining cell cycle homeostasis.Previous studies found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1(UCHL1)regulates female reproduction,especially in ovarian development.However,the mechanism by which UCHL1 regulates porcine GC proliferation remains unclear.Results UCHL1 overexpression promoted GC proliferation,and knockdown had the opposite effect.UCHL1 is directly bound to cyclin B1(CCNB1),prolonging the half-life of CCNB1 and inhibiting its degradation,thereby promoting GC proliferation.What's more,a flavonoid compound-isovitexin improved the enzyme activity of UCHL1 and promoted the proliferation of porcine GCs.Conclusions UCHL1 promoted the proliferation of porcine GCs by stabilizing CCNB1,and isovitexin enhanced the enzyme activity of UCHL1.These findings reveal the role of UCHL1 and the potential of isovitexin in regulating proliferation and provide insights into identifying molecular markers and nutrients that affect follicle development.
基金Shaanxi Province Natural Science Foundation,China(Grant No.:2021JM-568).
文摘Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.
文摘BACKGROUND Pancreatic cancer,a formidable gastrointestinal neoplasm,is characterized by its insidious onset,rapid progression,and resistance to treatment,which often lead to a grim prognosis.While the complex pathogenesis of pancreatic cancer is well recognized,recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts.However,their precise role in pancreatic cancer remains unknown.Resveratrol is a natural polyphenol known for its multifaceted biological actions,including antioxidative and neuroprotective properties,as well as its potential to inhibit tumor proliferation and migration.Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.AIM To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.METHODS Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression ofα-SMA and p16.HP-1 expression was determined using immunohistochemistry.Cells were treated with the senescence-inducing factors known as 3CKs.Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate.Western blotting was conducted to assess the expression levels of p16 and p21.Immunofluorescence was performed to assess LaminB1 expression.Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors,including IL-4,IL-6,IL-8,IL-13,MMP-2,MMP-9,CXCL1,and CXCL12.A scratch assay was used to assess the migratory capacity of the cells,whereas Transwell assays were used to evaluate their invasive potential.RESULTS Specifically,we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues,linking their abundance to cancer progression.Intriguingly,Resveratrol effectively eradicated these fibroblasts and hindered their senescence,which consequently impeded pancreatic cancer progression.CONCLUSION This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
文摘Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.
基金Supported by Guangdong Basic and Applied Basic Research Foundation (No.2021A1515111012).
文摘AIM:To investigate the impact of hsa_circ_0007482 on the proliferation and apoptosis of human pterygium fibroblasts(HPFs)and its correlation with the severity grades of pterygium.METHODS:Pterygium and normal conjunctival tissues were collected from the superior area of the same patient’s eye(n=33).The correlation between pterygium severity and hsa_circ_0007482 expression using quantitative reversetranscription polymerase chain reaction(RT-qPCR)were analyzed.Three distinct siRNA sequences targeting hsa_circ_0007482,along with a negative control sequence,were transfected into HPFs.Cell proliferation was assessed using the cell counting kit-8.Expression levels of Ki67,proliferating cell nuclear antigen(PCNA),Cyclin D1,Bax,B-cell lymphoma-2(Bcl-2),and Caspase-3 were measured via RT-qPCR.Immunofluorescence staining was employed to detect Ki67 and vimentin expressions.Apoptosis was evaluated using flow cytometry.RESULTS:Hsa_circ_0007482 expression was significantly higher in pterygium tissues compared to normal conjunctival tissues(P<0.001).Positive correlations were observed between hsa_circ_0007482 expression and pterygium severity,thickness,and vascular density.Knockdown of hsa_circ_0007482 inhibited cell proliferation,reducing the mRNA expression of Ki67,PCNA,and Cyclin D1 in HPFs.Hsa_circ_0007482 knockdown induced apoptosis,increasing mRNA expression levels of Bax and Caspase-3,while decreasing Bcl-2 expression in HPFs.Additionally,hsa_circ_0007482 knockdown attenuated vimentin expression in HPFs.CONCLUSION:The downregulation of hsa_circ_0007482 effectively hampers cell proliferation and triggers apoptosis in HPFs.There are discernible positive correlations detected between the expression of hsa_circ_0007482 and the severity of pterygium.
基金supported by the National Natural Science Foundation of China(32272849)the National Key R&D Program of China(2021YFF1000602)the earmarked fund for CARS-35-PIG。
文摘Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.
基金Supported by Natural Science Basic Research Program of Shaanxi Province,No.2021JM-256.
文摘BACKGROUND The role of Sm-like 5(LSM5)in colon cancer has not been determined.In this study,we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis.Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins.A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression.Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells.Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells.A high expression level of LSM5 was related to poor prognosis in patients with colon cancer.Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells.Silencing of LSM5 also facilitates the expression of p53,cyclin-dependent kinase inhibitor 1A(CDKN1A)and tumor necrosis factor receptor superfamily 10B(TNFRSF10B).The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53,CDKN1A and TNFRSF10B.CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53,CDKN1A and TNFRSF10B.
基金supported by the China Agriculture Research System of MOF and MARA。
文摘As a cell proliferation regulator involved in wide biological processes in plants,GRF-INTERACTING FACTOR(GIF)controls different tissues development.However,whether GIF participates in fruit development remains unclear.According to transcriptome data,we identified PbGIF1was highly expressed during fruit development in cytokinins induced parthenocarpy pear.In the present study,the biofunction of PbGIF1 was initially verified.Overexpression of PbGIF1 promoted fruit size of transgenic tomato.The size of flesh fruit was not affected by cell expansion but the cell proliferation was promoted by overexpressing Pb GIF1.The accelerated cell proliferation process was also observed in PbGIF1-overexpressed transgenic pear fruit calli.The transcriptional regulation of cytokinins on PbGIF1 was further confirmed by exogenous CPPU treatments in pear fruitlets.To investigate the underlying mechanism,the cytokinins-responded factor,PbRR1,was further focused on.The results of Yeast-one-hybrid assay suggested that PbRR1 can bind to the promoter sequence of PbGIF1.The transcriptional activation of PbRR1 on PbGIF1 was also confirmed by Dual-Luciferase assays.Taken together,the results showed that cytokinins control pear fruit development via the transcriptional activation of PbGIF1 by PbRR1.
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
基金This study was supported by the Nantong Science and Technology Plan Project(No.JC22022107).
文摘Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.However,the expression,clinical significance,and effects on cell propagation,invasion,and dissemination of circRNA_001896 in cervical cancer(CC)tissues remain unclear.Methods:The Gene Expression Omnibus(GEO)datasets(GSE113696 and GSE102686)were used to examine differential circRNA expression in CC and adjacent tissues.The expression of circRNA_001896 was detected in 72 CC patients usingfluorescence quantitative PCR.Correlation analysis with clinical pathological features was performed through COX multivariate and univariate analysis.The effect of circRNA_001896 downregulation on CC cell propagation was examined using the cell counting kit-8(CCK-8)test,clonogenic,3D sphere formation,and in vivo tumorigenesis assays.Results:Intersection of the GSE113696 and GSE102686 datasets revealed an increased expression of four circRNAs,including circRNA_001896,in CC tissues.Fluorescence quantitative PCR confirmed circRNA_001896 as a circular RNA.High expression of circRNA_001896 was considerably associated with lymph node metastasis,International Federation of Gynecologists and Obstetricians(FIGO)stage,tumor diameter,and survival period in CC patients.Proportional hazards model(COX)univariate and multivariate analyses revealed that circRNA_001896 expressions are a distinct risk factor affecting CC patients’prognosis.Cellular functional experiments showed that downregulating circRNA_001896 substantially suppressed CC cell growth,colony formation,and 3D sphere-forming ability.In vivo,tumorigenesis analysis in nude mice demonstrated that downregulating circRNA_001896 remarkably reduced the in vivo proliferation capacity of CC cells.Conclusion:CircRNA_001896 is highly expressed in CC tissues and is substantially related to lymph node metastasis,FIGO stage,tumor size,and survival period in patients.Moreover,downregulating circRNA_001896 significantly inhibits both in vivo and in vitro propagation of CC cells.Therefore,circRNA_001896 might be used as a biomarker for targeted therapy in cervical cancer.