In the present study, we synthesized well-defined tadpole-shaped polystyrene(PS) via the combination of atom transfer radical polymerization(ATRP) and UV-induced strain promoted azide-alkyne cycloaddtion(SPAAC) reacti...In the present study, we synthesized well-defined tadpole-shaped polystyrene(PS) via the combination of atom transfer radical polymerization(ATRP) and UV-induced strain promoted azide-alkyne cycloaddtion(SPAAC) reaction. A di-bromo ATRP initiator(Br-ini-Br) containing cyclopropenone-masked dibenzocyclooctyne group was used to prepare the linear PS with a cyclopropenone-masked dibenzocyclooctyne in the middle of the chain and bromo groups at both ends(Br-PS-Br). Then we used the single electron transfer-nitroxide radical coupling(SET-NRC) reaction to transfer the bromo end groups to azide groups(N_3-PS-N_3). After UV irradiation, the dibenzocyclooctyne group was quantitatively released, and intramolecularly reacted with alternative azide end group to produce the tadpole-shaped PS based on SPAAC reaction.展开更多
Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conve...Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors.Moreover,the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging.Herein,we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium(V)doping in the MoS_(2)lattice with excellent doping uniformity and stability.The lateral growth of the host MoS_(2)lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter.The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS_(2)monolayer film with excessively high doping concentrations.The excellent wafer-scale uniformity of the highly V-doped MoS_(2)film was confirmed through a series of microscopic,spectroscopic,and electrical analyses.展开更多
基金supported by the Ministry of Science and Technology of China(2014CB932200)the National Natural Science Foundation of China(51273100)the Natural Science Foundation of Shandong Province(ZR2014BQ022)
文摘In the present study, we synthesized well-defined tadpole-shaped polystyrene(PS) via the combination of atom transfer radical polymerization(ATRP) and UV-induced strain promoted azide-alkyne cycloaddtion(SPAAC) reaction. A di-bromo ATRP initiator(Br-ini-Br) containing cyclopropenone-masked dibenzocyclooctyne group was used to prepare the linear PS with a cyclopropenone-masked dibenzocyclooctyne in the middle of the chain and bromo groups at both ends(Br-PS-Br). Then we used the single electron transfer-nitroxide radical coupling(SET-NRC) reaction to transfer the bromo end groups to azide groups(N_3-PS-N_3). After UV irradiation, the dibenzocyclooctyne group was quantitatively released, and intramolecularly reacted with alternative azide end group to produce the tadpole-shaped PS based on SPAAC reaction.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(Nos.2019R1A2C1009025 and 2022R1A4A2000823)2022 research Fund(No.1.220024.01)of Ulsan National Institute of Science&Technology(UNIST).
文摘Substitutional atomic doping of transition metal dichalcogenides(TMDs)in the chemical vapor deposition(CVD)process is a promising and effective strategy for modifying their physicochemical properties.However,the conventional CVD method only allows narrow-range modulation of the dopant concentration owing to the low reactivity of the precursors.Moreover,the growth of wafer-scale monolayer TMD films with high dopant concentrations is much more challenging.Herein,we report a facile doping approach based on liquid precursor-mediated CVD process for achieving high vanadium(V)doping in the MoS_(2)lattice with excellent doping uniformity and stability.The lateral growth of the host MoS_(2)lattice and the reactivity of the V precursor were simultaneously improved by introducing an alkali metal halide as a reaction promoter.The metal halide promoter enabled the wafer-scale synthesis of V-incorporated MoS_(2)monolayer film with excessively high doping concentrations.The excellent wafer-scale uniformity of the highly V-doped MoS_(2)film was confirmed through a series of microscopic,spectroscopic,and electrical analyses.