By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulati...By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulations of dis- persion relation are explicitly derived for both strain gradi- ent beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological size- dependent beam models, the angular frequency, phase veloc- ity and group velocity increase with increasing wave num- ber. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.展开更多
As a novel dynamic network service infrastructure, Internet of Things (IoT) has gained remarkable popularity with obvious su- periorities in the interoperability and real-time communication. Despite of the convenien...As a novel dynamic network service infrastructure, Internet of Things (IoT) has gained remarkable popularity with obvious su- periorities in the interoperability and real-time communication. Despite of the convenience in collecting information to provide the decision basis for the users, the vulnerability of embed- ded sensor nodes in multimedia devices makes the malware propagation a growing serious problem, which would harm the security of devices and their users financially and physi- cally in wireless multimedia system (WMS). Therefore, many researches related to the mal- ware propagation and suppression have been proposed to protect the topology and system security of wireless multimedia network. In these studies, the epidemic model is of great significance to the analysis of malware prop- agation. Considering the cloud and state tran- sition of sensor nodes, a cloud-assisted model for malware detection and the dynamic differ- ential game against malware propagation are proposed in this paper. Firstly, a SVM based malware detection model is constructed with the data sharing at the security platform in the cloud. Then the number of malware-infected nodes with physical infectivity to susceptible nodes is calculated precisely based on the at- tributes of WMS transmission. Then the statetransition among WMS the modified epidemic devices is defined by model. Furthermore, a dynamic differential game and target cost function are successively derived for the Nash equilibrium between malware and WMS sys- tem. On this basis, a saddle-point malware de- tection and suppression algorithm is presented depending on the modified epidemic model and the computation of optimal strategies. Nu- merical results and comparisons show that the proposed algorithm can increase the utility of WMS efficiently and effectively.展开更多
Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Car...Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.展开更多
In this paper the effects of temperature on the radial breathing modes (RBMs) and radial wave propaga- tion in multiwall carbon nanotubes (MWCNTs) are inves- tigated using a continuum model of multiple elastic iso...In this paper the effects of temperature on the radial breathing modes (RBMs) and radial wave propaga- tion in multiwall carbon nanotubes (MWCNTs) are inves- tigated using a continuum model of multiple elastic isotropic shells. The van der Waals forces between tubes are simulated as a nonlinear function of interlayer spacing of MWCNTs. The governing equations are solved using a finite element method. A wide range of innermost radius-to-thickness ratio of MWCNTs is considered to enhance the investigation. The presented solution is verified by comparing the results with those reported in the literature. The effects of temperature on the van der Waals interaction coefficient between layers of MWCNTs are examined. It is found that the variation of the van der Waals interaction coefficient at high temperature is sensible. Subsequently, variations of RBM frequencies and radial wave propagation in MWCNTs with temperatures up to 1 600 K are illustrated. It is shown that the thick MWC- NTs are more sensible to temperature than the thin ones.展开更多
基金supported by the National Natural Science Foundation of China(11202117,11272186,11172231 and 50928601)the Postdoctoral Science Foundation of China(2012M521326)+3 种基金the Natural Science Fund of Shandong Province(ZR2012AM014 and BS2012ZZ006)Independent Innovation Fund of Shandong University(2011GN055)National Science Foundation(CMMI-0643726),DARPA(W91CRB-11-C-0112)Changjiang Scholar Program from Ministry of Education of China
文摘By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propaga- tion in micro/nanobeams is studied. The formulations of dis- persion relation are explicitly derived for both strain gradi- ent beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological size- dependent beam models, the angular frequency, phase veloc- ity and group velocity increase with increasing wave num- ber. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.
基金supported by the National Science Key Lab Fund under Grant No. KJ-15-104the Project of Henan Provincial Key Scientific and Technological Research under Grant No. 132102210003
文摘As a novel dynamic network service infrastructure, Internet of Things (IoT) has gained remarkable popularity with obvious su- periorities in the interoperability and real-time communication. Despite of the convenience in collecting information to provide the decision basis for the users, the vulnerability of embed- ded sensor nodes in multimedia devices makes the malware propagation a growing serious problem, which would harm the security of devices and their users financially and physi- cally in wireless multimedia system (WMS). Therefore, many researches related to the mal- ware propagation and suppression have been proposed to protect the topology and system security of wireless multimedia network. In these studies, the epidemic model is of great significance to the analysis of malware prop- agation. Considering the cloud and state tran- sition of sensor nodes, a cloud-assisted model for malware detection and the dynamic differ- ential game against malware propagation are proposed in this paper. Firstly, a SVM based malware detection model is constructed with the data sharing at the security platform in the cloud. Then the number of malware-infected nodes with physical infectivity to susceptible nodes is calculated precisely based on the at- tributes of WMS transmission. Then the statetransition among WMS the modified epidemic devices is defined by model. Furthermore, a dynamic differential game and target cost function are successively derived for the Nash equilibrium between malware and WMS sys- tem. On this basis, a saddle-point malware de- tection and suppression algorithm is presented depending on the modified epidemic model and the computation of optimal strategies. Nu- merical results and comparisons show that the proposed algorithm can increase the utility of WMS efficiently and effectively.
文摘Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.
文摘In this paper the effects of temperature on the radial breathing modes (RBMs) and radial wave propaga- tion in multiwall carbon nanotubes (MWCNTs) are inves- tigated using a continuum model of multiple elastic isotropic shells. The van der Waals forces between tubes are simulated as a nonlinear function of interlayer spacing of MWCNTs. The governing equations are solved using a finite element method. A wide range of innermost radius-to-thickness ratio of MWCNTs is considered to enhance the investigation. The presented solution is verified by comparing the results with those reported in the literature. The effects of temperature on the van der Waals interaction coefficient between layers of MWCNTs are examined. It is found that the variation of the van der Waals interaction coefficient at high temperature is sensible. Subsequently, variations of RBM frequencies and radial wave propagation in MWCNTs with temperatures up to 1 600 K are illustrated. It is shown that the thick MWC- NTs are more sensible to temperature than the thin ones.