期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Crack evolution behavior of rocks under confining pressures and its propagation model before peak stress 被引量:7
1
作者 ZUO Jian-ping CHEN Yan LIU Xiao-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3045-3056,共12页
The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation beha... The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation behavior of rocks in triaxial compression tests was investigated in detail.The main conclusions were as follows:1)According to the evolution characteristics of crack axial strain,the differential stress?strain curve of rocks under triaxial compressive condition can be divided into three phases which are linear elastic phase,crack propagation phase,post peak phase,respectively;2)The proposed models are applied to comparison with the test data of rocks under triaxial compressive condition and different temperatures.The theoretical data calculated by the models are in good agreement with the laboratory data,indicating that the proposed model can be applied to describing the crack propagation behavior and the nonlinear properties of rocks under triaxial compressive condition;3)The inelastic compliance and crack initiation strain in the proposed model have a decrease trend with the increase of confining pressure and temperature.Peak crack axial strain increases nonlinearly with the inelastic compliance and the increase rate increases gradually.Crack initiation strain has a linear relation with peak crack axial strain. 展开更多
关键词 crack strain crack propagation behavior crack propagation model stress strain relationship
下载PDF
Crack propagation behavior of inhomogeneous laminated Ti-Nb metal-metal composite 被引量:4
2
作者 Wen-juan CHENG Yong LIU +4 位作者 Da-peng ZHAO Bin LIU Yan-ni TAN Xiao-gang WANG Han-chun TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1882-1888,共7页
In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed b... In order to investigate the real-time cracking behavior of each component of a composite with strong interfacial bonding among lamellae, Ti-18 Nb(at.%) composite was prepared by spark plasma sintering(SPS), followed by hot-rolling, annealing, and quenching. The microstructure and mechanical properties were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-region X-ray diffractometry(MRXRD), nanoindentation, and in-situ scanning electron microscopy tensile testing. The results show that the Ti-18 Nb consists of Ti-enriched, diffusion and Nb-enriched zones, and the sharp Nb gradient across different zones leads to inhomogeneous distribution of phase and mechanical properties. A remarkable finding is that the diffusion zones not only enable the cooperative deformation between the brittle Ti-enriched zones and the ductile Nb-enriched zones but also act as the crack-arresters to prevent the local cracks in the Ti-enriched zones from further propagating across the composite. 展开更多
关键词 Ti-Nb metal-metal composite laminated microstructure in-situ SEM tensile testing fracture toughness crack propagation behavior
下载PDF
Propagation behavior of acoustic wave in wood
3
作者 Huadong Xu Guoqi Xu +1 位作者 Lihai Wang Lei Yu 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期671-676,共6页
We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in w... We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood. 展开更多
关键词 acoustic wave propagation behavior WOOD VELOCITY
下载PDF
Fatigue Crack Propagation Behavior of TiNi_(50.6)Shape Memory Alloy
4
作者 Guangbin RAO, Jianqiu WANG, We KE and Enhou HAN The State Key Laboratory of Corrosion and Protection, Institute of M-tal Research, Chinese Academy of Sciences,Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第4期403-408,共6页
The fatigue crack propagation behavior of TiNi50.6 shape memory alloy was studied. The ex- periment results showed that the crack propagation properties of this alloy display difference and similarity in comparison wi... The fatigue crack propagation behavior of TiNi50.6 shape memory alloy was studied. The ex- periment results showed that the crack propagation properties of this alloy display difference and similarity in comparison with common metallic materials. Because of the stress concentra- tion there was stress induced martensite transformation (SIMT) near the crack tip though the nominal stress was lower than the threshold stress of SIMT. The position and the amount of SIMT was in situ observed by a quester remote measurement system (QRMS). The observation results showed that the position of SIMT was beside the crack tip and was not in the plastic zone of common metallic materials (in front of the crack tip). The SIMT zone at an angle of about 45°to the direction of the crack propagation, like a butterfly,appeared in the loading process, disappeared in the unloading process and grew larger with the increase of K. The crack propagation rate(da/dN) followed the linear law in lg-lg plot. Observation of the crack surface showed fatigue striation clearly. The relationship between the site and the size of the plastic zone and the SIMT zone is discussed and a model is given to explain both the similarity and the difference of the crack propagation property of TiNi50.6 to common metal materials. 展开更多
关键词 Fatigue Crack Propagation behavior of TiNi Shape Memory Alloy
下载PDF
A New Approach to Analyzing Behavioral Change Propagation in Redesigning of Drone Camera Stabilizer
5
作者 Hamid Reza Moghadas Najaf Abad Ali Mahmoodi Farshad Pazooki 《Engineering(科研)》 2021年第12期707-738,共32页
Redesigning of complex products is not an easy task. Engineering change requirements can be extracted at any stage of the product redesign process, and it makes the management of engineering change become a challengin... Redesigning of complex products is not an easy task. Engineering change requirements can be extracted at any stage of the product redesign process, and it makes the management of engineering change become a challenging mission. The motivation for this study is to find the shortest path of behavioral change propagation (BCP), minimize the BCP, access to the special behavioral elements in order to better managing the BCP and classifying the behavioral attribute of the elements in terms of their relationship to change by betweenness centrality coefficient (BNCC), clustering coefficient (CLC), reachability coefficient (RC) and change propagation index (CPI). In this article, the procedure of managerial decision-making is proposed by combining system restrictions in behavioral clustering design structure matrix (BCDSM) with optimization algorithms. The practicality of suggested method is verified in redesign procedure of a phantom drone camera stabilizer as a case study. The results, indicate that the absorption of change by behavioral elements is dominant in the mechanical (63.9%), electrical (61.1%) and thermal (38.9%) behaviors of the drone camera stabilizer system in redesign process. These elements are best candidates for reducing the cost and time of behavioral changes in the system redesign and are desirable for the designer. 展开更多
关键词 behavioral Change Propagation behavioral Clustering Design Structure Matrix Drone Camera Stabilizer
下载PDF
A new model for predicting hydraulic fracture penetration or termination at an orthogonal interface between dissimilar formations
6
作者 Yu Zhao Yong-Fa Zhang +2 位作者 Guo-Dong Tian Chao-Lin Wang Jing Bi 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2810-2829,共20页
Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwa... Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus. 展开更多
关键词 Analytical model Hydraulic fracture Interface of dissimilar materials Vertical propagation behavior Parametric sensitivity analysis
下载PDF
In-situ investigation on the fatigue crack propagation behavior in ferrite-pearlite and dual-phase ferrite-bainite low carbon steels 被引量:8
7
作者 GUAN MingFei YU Hao 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第1期71-79,共9页
The purpose of this study was to describe the roles of microstructure types and grain boundary characteristics in fatigue crack propagation behavior in ferrite-pearlite steel and ferrite-bainite steel.The ferrite-bain... The purpose of this study was to describe the roles of microstructure types and grain boundary characteristics in fatigue crack propagation behavior in ferrite-pearlite steel and ferrite-bainite steel.The ferrite-bainite dual-phase steel was obtained by intermediate heat treatment conducted on ferrite-pearlite low carbon steel.This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy(SEM),electron backscattering diffraction(EBSD) and fatigue fractography analysis.Microscopic images arrested by in-situ SEM showed that the second hard bainite phase distributed in the soft ferrite matrix had a significant effect on preventing the cracks opening compared with pearlite,and that the cracks in ferrite-bainite steel were "locked" in the second hard bainite phase while the crack propagation path in ferrite-pearlite steel was more tortuous.Moreover,the fatigue fracture surface analysis and the coincidence site lattice(CSL) obtained by EBSD indicated that low-CSL grain boundaries in ferrite-bainite steel distributed more uniformly,which has a more significant effect on the resistance of crack propagation.It was revealed that ferrite-bainite dual-phase microstructures could inhibit the fatigue crack propagation more effectively than ferrite-pearlite microstructures. 展开更多
关键词 fatigue crack propagation behavior in-situ SEM ferrite-bainite microstructures grain boundaries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部